Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Insect Sci ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36611021

RESUMEN

Comprehensive decisions on the management of commercially produced bees, depend largely on associated knowledge of genetic diversity. In this study, we present novel microsatellite markers to support the breeding, management, and conservation of the blue orchard bee, Osmia lignaria Say (Hymenoptera: Megachilidae). Native to North America, O. lignaria has been trapped from wildlands and propagated on-crop and used to pollinate certain fruit, nut, and berry crops. Harnessing the O. lignaria genome assembly, we identified 59,632 candidate microsatellite loci in silico, of which 22 were tested using molecular techniques. Of the 22 loci, 12 loci were in Hardy-Weinberg equilibrium (HWE), demonstrated no linkage disequilibrium (LD), and achieved low genotyping error in two Intermountain North American wild populations in Idaho and Utah, USA. We found no difference in population genetic diversity between the two populations, but there was evidence for low but significant population differentiation. Also, to determine if these markers amplify in other Osmia, we assessed 23 species across the clades apicata, bicornis, emarginata, and ribifloris. Nine loci amplified in three species/subspecies of apicata, 22 loci amplified in 11 species/subspecies of bicornis, 11 loci amplified in seven species/subspecies of emarginata, and 22 loci amplified in two species/subspecies of ribifloris. Further testing is necessary to determine the capacity of these microsatellite loci to characterize genetic diversity and structure under the assumption of HWE and LD for species beyond O. lignaria. These markers will inform the conservation and commercial use of trapped and managed O. lignaria and other Osmia species for both agricultural and nonagricultural systems.


Asunto(s)
Himenópteros , Abejas/genética , Animales , Productos Agrícolas/genética , Agricultura/métodos , Frutas , Utah , Repeticiones de Microsatélite
2.
J Insect Sci ; 23(3)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279765

RESUMEN

Of the 265 known bumble bee (Bombus) species, knowledge of colony lifecycle is derived from relatively few species. As interest in Bombus commercialization and conservation grows, it is becoming increasingly important to understand colony growth dynamics across a variety of species since variation exists in nest success, colony growth, and reproductive output. In this study, we reported successful nest initiation and establishment rates of colonies and generated a timeline of colony development for 15 western North American Bombus species, which were captively reared from wild-caught gynes from 2009 to 2019. Additionally, we assessed variation in colony size among 5 western North American Bombus species from 2015 to 2018. Nest initiation and establishment rates varied greatly among species, ranging from 5-76.1% and 0-54.6%, respectively. Bombus griseocollis had the highest rates of nest success across the 11-yr period, followed by B. occidentalis, B. vosnesenskii, and B. huntii. Furthermore, days to nest initiation and days to nest establishment varied among species, ranging from 8.4 to 27.7 days and 32.7 to 47 days. Colony size also differed significantly among species with B. huntii and B. vosnesenskii producing more worker/drone cells than B. griseocollis, B. occidentalis, and B. vancouverensis. Additionally, gyne production differed significantly among species with B. huntii colonies producing more gynes than B. vosnesenskii. Results from this study increase knowledge of systematic nesting biology for numerous western North American Bombus species under captive rearing conditions, which can further improve rearing techniques available to conservationists and researchers.


Asunto(s)
Estadios del Ciclo de Vida , Reproducción , Abejas , Animales , Biología , América del Norte
3.
J Econ Entomol ; 116(3): 662-673, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36930576

RESUMEN

Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.


Asunto(s)
Virus ARN , Abejas , Animales , Virus ARN/genética , Reacción en Cadena de la Polimerasa , Polen , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA