Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 135: 106504, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015153

RESUMEN

Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.


Asunto(s)
Agaricales , Flavonas , Animales , Ratones , Monofenol Monooxigenasa , Melaninas , Cinética , Inhibidores Enzimáticos/química , Flavonas/farmacología
2.
Antioxidants (Basel) ; 11(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35624809

RESUMEN

The rate-determining role of tyrosinase makes it a critical component in the mechanism that is responsible for melanogenesis. Thirteen (Z)-5-(substituted benzylidene)-3-phenyl-2-thioxothiazolidin-4-one ((Z)-BPTT) analogs were designed based on the structural features of two potent tyrosinase inhibitors, viz. (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-thioxothiazolidin-4-one (5-HMT) and (Z)-2-(2,4-dihydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one (compound I). The trisubstituted double bond geometry of the (Z)-BPTT analogs that were generated by Knoevenagel condensation was determined using vicinal 1H and 13C coupling constants in 13C NMR spectra. Four analogs, numbers 1-3 and 6, inhibited mushroom tyrosinase 9 to 29 times more potently than kojic acid did. Kinetic study results indicated that these four analogs inhibited mushroom tyrosinase competitively and this was supported by docking simulation. Also, docking results using human tyrosinase suggested that analogs 2 and 3 might be potent human tyrosinase inhibitors. In vitro studies using B16F10 cells (a melanoma cell line) showed that analogs 1, 2, 3, and 6 inhibited cellular tyrosinase and melanin production more than kojic acid did, without perceptible cytotoxicity. In particular, analog 2, which possesses a catechol group, exerted an extremely potent anti-melanogenic effect. In addition, analog 2 showed strong scavenging activity against DPPH and ABTS radicals. Furthermore, analog 2 not only reduced ROS levels, which induce melanogenesis, but it also suppressed tyrosinase and MITF (microphthalamia-associated transcription factor) protein levels and the expressions of melanogenesis-related genes. These results suggest that analog 2 is an efficient tyrosinase inhibitor that alleviates melanogenesis by dual mechanisms of (i) the inhibition of melanogenesis-related proteins and genes and (ii) the direct inhibition of tyrosinase activity.

3.
Antioxidants (Basel) ; 11(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35883866

RESUMEN

Sixteen compounds bearing a benzothiazole moiety were synthesized as potential tyrosinase inhibitors and evaluated for mushroom tyrosinase inhibitory activity. The compound 4-(5-(trifluoromethyl)benzo[d]thiazol-2-yl)benzene-1,3-diol (compound 1b) exhibited the highest tyrosinase activity inhibition, with an IC50 value of 0.2 ± 0.01 µM (a potency 55-fold greater than kojic acid). In silico results using mushroom tyrosinase and human tyrosinase showed that the 2,4-hydroxyl substituents on the phenyl ring of 1b played an important role in the inhibition of both tyrosinases. Kinetic studies on mushroom tyrosinase indicated that 1b is a competitive inhibitor of monophenolase and diphenolase, and this was supported by docking results. In B16F10 murine melanoma cells, 1a and 1b dose-dependently and significantly inhibited melanin production intracellularly, and melanin release into medium more strongly than kojic acid, and these effects were attributed to the inhibition of cellular tyrosinase. Furthermore, the inhibition of melanin production by 1b was found to be partially due to the inhibition of tyrosinase glycosylation and the suppression of melanogenesis-associated genes. Compound 1c, which has a catechol group, exhibited potent antioxidant activities against ROS, DPPH, and ABTS, and 1b also had strong ROS and ABTS radical scavenging activities. These results suggest that 5-(trifluoromethyl)benzothiazole derivatives are promising anti-tyrosinase lead compounds with potent antioxidant effects.

4.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36290640

RESUMEN

Many compounds containing the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs with high log p values for skin. These analogs were synthesized using a two-step reaction, and their stereochemistry was confirmed using the 3JC4-Hß values of C4 measured in proton-coupled 13C mode. Analogs 2 (IC50 = 5.21 ± 0.86 µM) and 3 (IC50 = 1.03 ± 0.14 µM) more potently inhibited mushroom tyrosinase than kojic acid (IC50 = 25.26 ± 1.10 µM). Docking results showed 2 binds strongly to the active site of tyrosinase, while 3 binds strongly to an allosteric site. Kinetic studies using l-tyrosine as substrate indicated 2 and 3 competitively and non-competitively inhibit tyrosinase, respectively, which was supported by our docking results. In B16F10 cells, 3 significantly and concentration-dependently reduced α-MSH plus IBMX induced increases in cellular tyrosinase activity and melanin production and the similarity between these inhibitory patterns implied that the anti-melanogenic effect of 3 might be due to its tyrosinase-inhibitory ability. In addition, 2 and 3 exhibited strong antioxidant effects; for example, they reduced ROS and ONOO- levels and exhibited radical scavenging activities, suggesting that these effects might underlie their anti-melanogenic effects. Furthermore, 3 suppressed the expressions of melanogenesis-associated proteins and genes in B16F10 cells. These results suggest (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs offer a means of producing novel anti-melanogenesis agents.

5.
Exp Hematol Oncol ; 11(1): 68, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209131

RESUMEN

BACKGROUND: The protein kinase A (PKA)/cAMP response element-binding protein (CREB) has been suggested to be related to the inhibition of the proliferation of non-small cell lung cancer (NSCLC) cells. This study aimed to investigate the efficacy of a novel diarylcyclohexanone derivative, MHY4571, in regulating the PKA-CREB pathway and to study its anti-tumor role in squamous NSCLC. METHODS: We designed MHY4571 as a novel PKA inhibitor with acceptable in silico ADME properties and tested it in vitro in lung cancer cell lines and in vivo in xenograft and orthotopic mouse models of squamous cell lung carcinoma. RESULTS: MHY4571 inhibited PKA activity (> 70% inhibition) and suppressed the expression of p-PKA and p-CREB dose-dependently. MHY4571 treatment reduced lung cancer cell viability and promoted caspase 3-dependent apoptotic cell death. Orally administered MHY4571 significantly suppressed lung tumor growth in xenograft and orthotopic mouse models. PKA catalytic subunit alpha-silencing by siRNA (siPKA) strongly attenuated CREB phosphorylation; siCREB did not alter PKA protein levels or its phosphorylation, suggesting that PKA is an upstream regulator of CREB activity. MHY4571 acted synergistically with cisplatin (on co-treatment) to induce apoptotic cell death in lung cancer cells. CONCLUSIONS: Our results imply that MHY4571 may be a potential drug candidate for squamous cell lung cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA