Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Immunol ; 232: 108871, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619377

RESUMEN

Despite the burgeoning field of coronavirus disease-19 (COVID-19) research, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibodies remains unclear. This study validated two high-throughput immunological methods for use as surrogate live virus neutralisation assays and employed them to examine the half-life of SARS-CoV-2 neutralising antibodies in convalescent plasma donations made by 42 repeat donors between April and September 2020. SARS-CoV-2 neutralising antibody titres decreased over time but typically remained above the methods' diagnostic cut-offs. Using this longitudinal data, the average half-life of SARS-CoV-2 neutralising antibodies was determined to be 20.4 days. SARS-CoV-2 neutralising antibody titres appear to persist in the majority of donors for several months. Whether these titres confer protection against re-infection requires further study and is of particular relevance as COVID-19 vaccines become widely available.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/metabolismo , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Donantes de Sangre , COVID-19/inmunología , COVID-19/terapia , Femenino , Semivida , Humanos , Inmunización Pasiva , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Plasma/inmunología , Plasma/metabolismo , SARS-CoV-2/inmunología , Adulto Joven , Sueroterapia para COVID-19
2.
J Transl Med ; 13: 216, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26149494

RESUMEN

BACKGROUND: Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. METHODS: VACV LIVP 1.1.1 replication in C57BL/6 and Foxn1(nu/nu) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. RESULTS: We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of Iba1(+) microglia and GFAP(+) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. CONCLUSION: Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development.


Asunto(s)
Astrocitos/patología , Glioma/patología , Glioma/virología , Microglía/patología , Virus Oncolíticos/fisiología , Virus Vaccinia/fisiología , Replicación Viral , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/virología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Citometría de Flujo , Humanos , Inyecciones Intralesiones , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Necrosis , Virus Oncolíticos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Virus Vaccinia/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
J Transl Med ; 11: 106, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23635329

RESUMEN

BACKGROUND: Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. METHODS: In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. RESULTS: We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. CONCLUSIONS: Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.


Asunto(s)
Neoplasias Pulmonares/terapia , Viroterapia Oncolítica/métodos , Derrame Pleural Maligno/terapia , Animales , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Inyecciones Subcutáneas , Imagen por Resonancia Magnética , Ratones , Ratones Desnudos , Virus Oncolíticos/metabolismo , Anticuerpos de Cadena Única/química , Resultado del Tratamiento , Virus Vaccinia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Immunother Cancer ; 11(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37963637

RESUMEN

BACKGROUND: The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS: The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS: AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS: These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Dioxigenasas , Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Humanos , Ratones , Animales , Triptófano , Receptores de Hidrocarburo de Aril/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Leucocitos Mononucleares/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Quinurenina/metabolismo , Inmunoterapia , Factores Inmunológicos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
5.
PLoS One ; 17(1): e0262162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34982806

RESUMEN

Analysis of convalescent plasma derived from individuals has shown that IgG3 has the most important role in binding to SARS-CoV-2 antigens; however, this has not yet been confirmed in large studies, and the link between binding and neutralization has not been confirmed. By analyzing plasma pools consisting of 247-567 individual convalescent donors, we demonstrated the binding of IgG3 and IgM to Spike-1 protein and the receptor-binding domain correlates strongly with viral neutralization in vitro. Furthermore, despite accounting for only approximately 12% of total immunoglobulin mass, collectively IgG3 and IgM account for approximately 80% of the total neutralization. This may have important implications for the development of potent therapies for COVID-19, as it indicates that hyperimmune globulins or convalescent plasma donations with high IgG3 concentrations may be a highly efficacious therapy.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/inmunología , Convalecencia , Inmunoglobulina G/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , SARS-CoV-2/fisiología , Células Vero
6.
Mol Ther Oncolytics ; 2: 15009, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27119106

RESUMEN

Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible.

7.
Theranostics ; 5(10): 1045-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26199644

RESUMEN

We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.


Asunto(s)
Vectores Genéticos/genética , Melaninas/biosíntesis , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Nanomedicina Teranóstica/métodos , Virus Vaccinia/genética , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/metabolismo , Vectores Genéticos/farmacología , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Desnudos , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagen , Neoplasias/virología , Viroterapia Oncolítica/instrumentación , Radiografía , Nanomedicina Teranóstica/instrumentación , Carga Tumoral , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/enzimología , Virus Vaccinia/metabolismo
8.
PLoS One ; 9(6): e98533, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24887184

RESUMEN

More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases.


Asunto(s)
Modelos Biológicos , Metástasis de la Neoplasia , Viroterapia Oncolítica , Neoplasias del Cuello Uterino/patología , Animales , Ciclo Celular , Línea Celular Tumoral , Femenino , Humanos , Metástasis Linfática , Ratones , Microscopía Fluorescente , Neoplasias del Cuello Uterino/terapia
9.
Nat Genet ; 46(1): 33-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316979

RESUMEN

A major challenge in cancer genetics is to determine which low-frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers and find inactivating mutations in the homeodomain transcription factor gene CUX1 (cut-like homeobox 1) in ~1-5% of various tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth and susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors.


Asunto(s)
Genes Supresores de Tumor , Proteínas de Homeodominio/genética , Mutación , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Animales , Elementos Transponibles de ADN , Drosophila/genética , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Insercional , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Nucleares/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA