Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37883971

RESUMEN

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Fenómenos Fisiológicos Celulares
2.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638077

RESUMEN

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Asunto(s)
Evolución Biológica , Peces Killi/genética , Cromosomas Sexuales , Envejecimiento , Animales , Femenino , Genoma , Peces Killi/fisiología , Masculino , Datos de Secuencia Molecular , Procesos de Determinación del Sexo
3.
Immunity ; 52(6): 1075-1087.e8, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32445619

RESUMEN

Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Hypoxia is a common feature of solid tumors, and cells adapt by upregulating the transcription factor HIF-1α. Here, we defined the transcriptional landscape of mouse tumor-infiltrating natural killer (NK) cells by using single-cell RNA sequencing. Conditional deletion of Hif1a in NK cells resulted in reduced tumor growth, elevated expression of activation markers, effector molecules, and an enriched NF-κB pathway in tumor-infiltrating NK cells. Interleukin-18 (IL-18) from myeloid cells was required for NF-κB activation and the enhanced anti-tumor activity of Hif1a-/- NK cells. Extended culture with an HIF-1α inhibitor increased human NK cell responses. Low HIF1A expression was associated with high expression of IFNG in human tumor-infiltrating NK cells, and an enriched NK-IL18-IFNG signature in solid tumors correlated with increased overall patient survival. Thus, inhibition of HIF-1α unleashes NK cell anti-tumor activity and could be exploited for cancer therapy.


Asunto(s)
Citotoxicidad Inmunológica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Animales , Biomarcadores , Biología Computacional , Citocinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Activación de Linfocitos/genética , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/mortalidad , Pronóstico , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología
4.
Nature ; 613(7942): 179-186, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517594

RESUMEN

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Señalización del Calcio , Muerte Celular , Análisis de Supervivencia , Calcio/metabolismo
5.
Nat Rev Mol Cell Biol ; 14(4): 225-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23486282

RESUMEN

For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Epigénesis Genética , Células Madre Pluripotentes/metabolismo , Animales , Linaje de la Célula/genética , Transdiferenciación Celular/genética , Humanos , Modelos Genéticos , Células Madre Pluripotentes/citología
6.
Nat Rev Mol Cell Biol ; 14(4): 225-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23847783

RESUMEN

For decades, Waddington's concept of the 'epigenetic landscape' has served as an educative hierarchical model to illustrate the progressive restriction of cell differentiation potential during normal development. While still being highly valuable in the context of normal development, the Waddington model falls short of accommodating recent breakthroughs in cell programming. The advent of induced pluripotent stem (iPS) cells and advances in direct cell fate conversion (also known as transdifferentiation) suggest that somatic and pluripotent cell fates can be interconverted without transiting through distinct hierarchies. We propose a non-hierarchical 'epigenetic disc' model to explain such cell fate transitions, which provides an alternative landscape for modelling cell programming and reprogramming.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Modelos Genéticos , Células Madre/fisiología , Animales , Linaje de la Célula , Ectodermo/citología , Endodermo/citología , Humanos , Mesodermo/citología
7.
Proc Natl Acad Sci U S A ; 119(40): e2202236119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161941

RESUMEN

X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of ß-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active ß-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2ß (PI3KC2ß) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active ß1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2ß activity. We further demonstrate that a hitherto unknown role of PI3KC2ß in the endocytic trafficking of active ß1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2ß in the control of active ß-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2ß catalysis as a viable treatment option for XLCNM patients.


Asunto(s)
Miopatías Estructurales Congénitas , Fosfatidilinositol 3-Quinasa , Humanos , Integrinas/genética , Músculo Esquelético , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética
8.
Glia ; 72(8): 1484-1500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780213

RESUMEN

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.


Asunto(s)
Encéfalo , Espinas Dendríticas , Ratones Endogámicos C57BL , Microglía , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Espinas Dendríticas/efectos de los fármacos , Masculino , Ratones , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Fagocitosis/fisiología , Fagocitosis/efectos de los fármacos , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Ratones Transgénicos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Compuestos Orgánicos
9.
Stroke ; 55(6): 1629-1640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639087

RESUMEN

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.


Asunto(s)
Electroencefalografía , Potenciales Evocados Motores , Corteza Motora , Inhibición Neural , Recuperación de la Función , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Estimulación Magnética Transcraneal/métodos , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Corteza Motora/fisiopatología , Recuperación de la Función/fisiología , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología , Anciano de 80 o más Años
10.
Hum Brain Mapp ; 45(5): e26654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520361

RESUMEN

Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.


Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Masculino , Humanos , Sustancia Blanca/patología , Distribución Tisular , Imagen de Cuerpo Entero , Obesidad/diagnóstico por imagen , Obesidad/complicaciones , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Tejido Adiposo/patología
11.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34664075

RESUMEN

Transposable elements (TEs) have been associated with many, frequently detrimental, biological roles. Consequently, the regulations of TEs, e.g. via DNA-methylation and histone modifications, are considered critical for maintaining genomic integrity and other functions. Still, the high-throughput study of TEs is usually limited to the family or consensus-sequence level because of alignment problems prompted by high-sequence similarities and short read lengths. To entirely comprehend the effects and reasons of TE expression, however, it is necessary to assess the TE expression at the level of individual instances. Our simulation study demonstrates that sequence similarities and short read lengths do not rule out the accurate assessment of (differential) expression of TEs at the instance-level. With only slight modifications to existing methods, TE expression analysis works surprisingly well for conventional paired-end sequencing data. We find that SalmonTE and Telescope can accurately tally a considerable amount of TE instances, allowing for differential expression recovery in model and non-model organisms.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Metilación de ADN , Análisis de Secuencia de ADN
12.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776660

RESUMEN

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Ratones , Femenino , Animales , Telangiectasia Hemorrágica Hereditaria/genética , Células Endoteliales/metabolismo , Factor de Crecimiento Placentario/metabolismo , Hígado/patología , Transducción de Señal , Factor 2 de Diferenciación de Crecimiento/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
13.
EMBO Rep ; 23(5): e54027, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289477

RESUMEN

Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human-specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited-induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule-associated protein-like 1 (EML1) gene. EML1-deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single-cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human-specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes-associated protein 1 (YAP1)-triggered expansion. Our data highlight a progenitor origin of EML1 mutation-induced MCD and provide new mechanistic insight into the human disease pathology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Corteza Cerebral/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Neuronas/metabolismo , Organoides/metabolismo
14.
EMBO Rep ; 23(8): e54234, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35735139

RESUMEN

Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , ADN sin Sentido/genética , Drosophila melanogaster , Mutación con Ganancia de Función , Humanos , Cinesinas/genética , Neuronas Motoras/metabolismo , Mutación , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
15.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37452493

RESUMEN

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Asunto(s)
MicroARNs , Rabdomiosarcoma Embrionario , Humanos , Niño , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/metabolismo , Rabdomiosarcoma Embrionario/patología , Miogenina/genética , Miogenina/metabolismo , Diferenciación Celular/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Línea Celular Tumoral , Proteínas Represoras
16.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542188

RESUMEN

Induced pluripotent stem cells (iPSCs) and their derivatives have been described to display epigenetic memory of their founder cells, as well as de novo reprogramming-associated alterations. In order to selectively explore changes due to the reprogramming process and not to heterologous somatic memory, we devised a circular reprogramming approach where somatic stem cells are used to generate iPSCs, which are subsequently re-differentiated into their original fate. As somatic founder cells, we employed human embryonic stem cell-derived neural stem cells (NSCs) and compared them to iPSC-derived NSCs derived thereof. Global transcription profiling of this isogenic circular system revealed remarkably similar transcriptomes of both NSC populations, with the exception of 36 transcripts. Amongst these we detected a disproportionately large fraction of X chromosomal genes, all of which were upregulated in iPSC-NSCs. Concurrently, we detected differential methylation of X chromosomal sites spatially coinciding with regions harboring differentially expressed genes. While our data point to a pronounced overall reinstallation of autosomal transcriptomic and methylation signatures when a defined somatic lineage is propagated through pluripotency, they also indicate that X chromosomal genes may partially escape this reinstallation process. Considering the broad application of iPSCs in disease modeling and regenerative approaches, such reprogramming-associated alterations in X chromosomal gene expression and DNA methylation deserve particular attention.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Humanos , Metilación de ADN , Células-Madre Neurales/metabolismo , Diferenciación Celular/genética , Epigénesis Genética , Reprogramación Celular/genética
17.
Semin Cell Dev Biol ; 111: 15-22, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32741653

RESUMEN

Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Organoides/metabolismo , Heterotopia Nodular Periventricular/genética , Diferenciación Celular , Corteza Cerebral/anomalías , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiopatología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Humanos , Lisencefalia/metabolismo , Lisencefalia/patología , Lisencefalia/fisiopatología , Megalencefalia/metabolismo , Megalencefalia/patología , Megalencefalia/fisiopatología , Microcefalia/metabolismo , Microcefalia/patología , Microcefalia/fisiopatología , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Organoides/patología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células
18.
Stroke ; 54(12): 3081-3089, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011237

RESUMEN

BACKGROUND: The indication for mechanical thrombectomy (MT) in stroke patients with large vessel occlusion has been constantly expanded over the past years. Despite remarkable treatment effects at the group level in clinical trials, many patients remain severely disabled even after successful recanalization. A better understanding of this outcome variability will help to improve clinical decision-making on MT in the acute stage. Here, we test whether current outcome models can be refined by integrating information on the preservation of the corticospinal tract as a functionally crucial white matter tract derived from acute perfusion imaging. METHODS: We retrospectively analyzed 162 patients with stroke and large vessel occlusion of the anterior circulation who were admitted to the University Medical Center Lübeck between 2014 and 2020 and underwent MT. The ischemic core was defined as fully automatized based on the acute computed tomography perfusion with cerebral blood volume data using outlier detection and clustering algorithms. Normative whole-brain structural connectivity data were used to infer whether the corticospinal tract was affected by the ischemic core or preserved. Ordinal logistic regression models were used to correlate this information with the modified Rankin Scale after 90 days. RESULTS: The preservation of the corticospinal tract was associated with a reduced risk of a worse functional outcome in large vessel occlusion-stroke patients undergoing MT, with an odds ratio of 0.28 (95% CI, 0.15-0.53). This association was still significant after adjusting for multiple confounding covariables, such as age, lesion load, initial symptom severity, sex, stroke side, and recanalization status. CONCLUSIONS: A preinterventional computed tomography perfusion-based surrogate of corticospinal tract preservation or disconnectivity is strongly associated with functional outcomes after MT. If validated in independent samples this concept could serve as a novel tool to improve current outcome models to better understand intersubject variability after MT in large vessel occlusion stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/cirugía , Estudios Retrospectivos , Tractos Piramidales/diagnóstico por imagen , Resultado del Tratamiento , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Trombectomía/métodos , Imagen de Perfusión/métodos
19.
Stroke ; 54(4): 955-963, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36846963

RESUMEN

BACKGROUND: Most studies on stroke have been designed to examine one deficit in isolation; yet, survivors often have multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits remain poorly understood, network-theoretical methods may open new avenues of understanding. METHODS: Fifty subacute stroke patients (7±3days poststroke) underwent diffusion-weighted magnetic resonance imaging and a battery of clinical tests of motor and cognitive functions. We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-based probabilistic tractography and whole-brain connectomes. To efficiently integrate inputs from different sources, brain networks rely on a rich-club of a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. Overlaying individual lesion masks onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and associate them to impairment. RESULTS: We computed efficiency of the unaffected connectome and found it was more strongly correlated to impairment in strength, dexterity, and attention than efficiency of the total connectome. The magnitude of the correlation between efficiency and impairment followed the order attention>dexterity ≈ strength (strength: |r|=.03, P=0.02, dexterity: |r|=.30, P=0.05, attention: |r|=.55, P<0.001). Network weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club weights. CONCLUSIONS: Attentional impairment is more sensitive to disruption of coordinated networks between brain regions than motor impairment, which is sensitive to disruption of localized networks. Providing more accurate reflections of actually functioning parts of the network enables the incorporation of information about the impact of brain lesions on connectomics contributing to a better understanding of underlying stroke mechanisms.


Asunto(s)
Disfunción Cognitiva , Conectoma , Accidente Cerebrovascular , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Disfunción Cognitiva/patología , Cognición , Conectoma/métodos , Imagen por Resonancia Magnética
20.
Bioinformatics ; 38(20): 4727-4734, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36018233

RESUMEN

MOTIVATION: Transcriptome-based gene co-expression analysis has become a standard procedure for structured and contextualized understanding and comparison of different conditions and phenotypes. Since large study designs with a broad variety of conditions are costly and laborious, extensive comparisons are hindered when utilizing only a single dataset. Thus, there is an increased need for tools that allow the integration of multiple transcriptomic datasets with subsequent joint analysis, which can provide a more systematic understanding of gene co-expression and co-functionality within and across conditions. To make such an integrative analysis accessible to a wide spectrum of users with differing levels of programming expertise it is essential to provide user-friendliness and customizability as well as thorough documentation. RESULTS: This article introduces horizontal CoCena (hCoCena: horizontal construction of co-expression networks and analysis), an R-package for network-based co-expression analysis that allows the analysis of a single transcriptomic dataset as well as the joint analysis of multiple datasets. With hCoCena, we provide a freely available, user-friendly and adaptable tool for integrative multi-study or single-study transcriptomics analyses alongside extensive comparisons to other existing tools. AVAILABILITY AND IMPLEMENTATION: The hCoCena R-package is provided together with R Markdowns that implement an exemplary analysis workflow including extensive documentation and detailed descriptions of data structures and objects. Such efforts not only make the tool easy to use but also enable the seamless integration of user-written scripts and functions into the workflow, creating a tool that provides a clear design while remaining flexible and highly customizable. The package and additional information including an extensive Wiki are freely available on GitHub: https://github.com/MarieOestreich/hCoCena. The version at the time of writing has been added to Zenodo under the following link: https://doi.org/10.5281/zenodo.6911782. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Transcriptoma , Perfilación de la Expresión Génica , Fenotipo , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA