Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(9): e1011597, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669278

RESUMEN

When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.


Asunto(s)
Virus Sincitial Respiratorio Humano , Virosis , Humanos , Inmunidad Innata , Interferones , Proteínas Virales
2.
PLoS Comput Biol ; 19(5): e1011155, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216347

RESUMEN

Living cells utilize signaling pathways to sense, transduce, and process information. As the extracellular stimulation often has rich temporal characteristics which may govern dynamic cellular responses, it is important to quantify the rate of information flow through the signaling pathways. In this study, we used an epithelial cell line expressing a light-activatable FGF receptor and an ERK activity reporter to assess the ability of the MAPK/ERK pathway to transduce signal encoded in a sequence of pulses. By stimulating the cells with random light pulse trains, we demonstrated that the MAPK/ERK channel capacity is at least 6 bits per hour. The input reconstruction algorithm detects the light pulses with 1-min accuracy 5 min after their occurrence. The high information transmission rate may enable the pathway to coordinate multiple processes including cell movement and respond to rapidly varying stimuli such as chemoattracting gradients created by other cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Transducción de Señal , Línea Celular , Sistema de Señalización de MAP Quinasas/fisiología , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
3.
J Virol ; 96(22): e0134122, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326278

RESUMEN

We observed the interference between two prevalent respiratory viruses, respiratory syncytial virus (RSV) and influenza A virus (IAV) (H1N1), and characterized its molecular underpinnings in alveolar epithelial cells (A549). We found that RSV induces higher levels of interferon beta (IFN-ß) production than IAV and that IFN-ß priming confers higher-level protection against infection with IAV than with RSV. Consequently, we focused on the sequential infection scheme of RSV and then IAV. Using A549 wild-type (WT), IFNAR1 knockout (KO), IFNLR1 KO, and IFNAR1-IFNLR1 double-KO cell lines, we found that both IFN-ß and IFN-λ are necessary for maximum protection against subsequent infection. Immunostaining revealed that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. Strikingly, the susceptible cells turned out to be those already compromised and efficiently expressing RSV, whereas the bystander, interferon-primed cells are resistant to IAV infection. Thus, virus-virus exclusion at the cell population level is not realized through direct competition for a shared ecological niche (single cell) but rather is achieved with the involvement of specific cytokines induced by the host's innate immune response. IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) are common recurrent respiratory infectants that show a relatively high coincidence. We demonstrated that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. The susceptible cells are those already compromised and efficiently expressing RSV, whereas the bystander cells are resistant to IAV infection. The cross-protective effect critically depends on IFN-ß and IFN-λ signaling and thus ensues when the proportion of cells preinfected with RSV is relatively low yet sufficient to trigger a pervasive antiviral state in bystander cells. Our study suggests that mild, but not severe, respiratory infections may have a short-lasting protective role against more dangerous respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Virus Sincitial Respiratorio Humano , Humanos , SARS-CoV-2 , Interferones/metabolismo , Interferón lambda
4.
Bioinformatics ; 33(22): 3667-3669, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29036531

RESUMEN

SUMMARY: Rule-based modeling is a powerful approach for studying biomolecular site dynamics. Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial dimensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of individual molecules and the stochastic firing of rule-defined reaction events. Because rules are used as event generators, the algorithm is network-free, meaning that it does not require to generate the complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or complex of molecules) is taken to occupy a single lattice site that cannot be shared with another molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated processes, including adsorption, desorption and crowding. Models are specified using an extension of the BioNetGen language, which allows to account for spatial features of the simulated process. AVAILABILITY AND IMPLEMENTATION: The C ++ source code for SPATKIN is distributed freely under the terms of the GNU GPLv3 license. The source code can be compiled for execution on popular platforms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available. The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.ippt.pan.pl/software/spatkin). CONTACT: spatkin.simulator@gmail.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Simulación de Dinámica Molecular , Programas Informáticos , Algoritmos
5.
PLoS Comput Biol ; 12(2): e1004787, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26928575

RESUMEN

The p53 transcription factor is a regulator of key cellular processes including DNA repair, cell cycle arrest, and apoptosis. In this theoretical study, we investigate how the complex circuitry of the p53 network allows for stochastic yet unambiguous cell fate decision-making. The proposed Markov chain model consists of the regulatory core and two subordinated bistable modules responsible for cell cycle arrest and apoptosis. The regulatory core is controlled by two negative feedback loops (regulated by Mdm2 and Wip1) responsible for oscillations, and two antagonistic positive feedback loops (regulated by phosphatases Wip1 and PTEN) responsible for bistability. By means of bifurcation analysis of the deterministic approximation we capture the recurrent solutions (i.e., steady states and limit cycles) that delineate temporal responses of the stochastic system. Direct switching from the limit-cycle oscillations to the "apoptotic" steady state is enabled by the existence of a subcritical Neimark-Sacker bifurcation in which the limit cycle loses its stability by merging with an unstable invariant torus. Our analysis provides an explanation why cancer cell lines known to have vastly diverse expression levels of Wip1 and PTEN exhibit a broad spectrum of responses to DNA damage: from a fast transition to a high level of p53 killer (a p53 phosphoform which promotes commitment to apoptosis) in cells characterized by high PTEN and low Wip1 levels to long-lasting p53 level oscillations in cells having PTEN promoter methylated (as in, e.g., MCF-7 cell line).


Asunto(s)
Retroalimentación Fisiológica/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/fisiología , Apoptosis/fisiología , Puntos de Control del Ciclo Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos
6.
J Chem Phys ; 143(21): 215102, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26646890

RESUMEN

Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.


Asunto(s)
Biocatálisis , Simulación por Computador , Modelos Biológicos , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Difusión , Humanos , Cinética , Método de Montecarlo , Fosforilación
7.
Sci Signal ; 16(815): eabq1173, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085817

RESUMEN

Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-ß (IFN-ß) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-ß-responding cells to IFN-ß-secreting cells.


Asunto(s)
Interferón beta , ARN , Interferón beta/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Inmunidad Innata , Modelos Teóricos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
8.
Phys Biol ; 9(5): 055002, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23011381

RESUMEN

Living cells may be considered as biochemical reactors of multiple steady states. Transitions between these states are enabled by noise, or, in spatially extended systems, may occur due to the traveling wave propagation. We analyze a one-dimensional bistable stochastic birth-death process by means of potential and temperature fields. The potential is defined by the deterministic limit of the process, while the temperature field is governed by noise. The stable steady state in which the potential has its global minimum defines the global deterministic attractor. For the stochastic system, in the low noise limit, the stationary probability distribution becomes unimodal, concentrated in one of two stable steady states, defined in this study as the global stochastic attractor. Interestingly, these two attractors may be located in different steady states. This observation suggests that the asymptotic behavior of spatially extended stochastic systems depends on the substrate diffusivity and size of the reactor. We confirmed this hypothesis within kinetic Monte Carlo simulations of a bistable reaction- diffusion model on the hexagonal lattice. In particular, we found that although the kinase-phosphatase system remains inactive in a small domain, the activatory traveling wave may propagate when a larger domain is considered.


Asunto(s)
Modelos Biológicos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas/metabolismo , Procesos Estocásticos , Activación Enzimática , Cadenas de Markov , Método de Montecarlo , Temperatura , Termodinámica
9.
Viruses ; 14(2)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35215887

RESUMEN

Omicron, the novel highly mutated SARS-CoV-2 Variant of Concern (VOC, Pango lineage B.1.1.529) was first collected in early November 2021 in South Africa. By the end of November 2021, it had spread and approached fixation in South Africa, and had been detected on all continents. We analyzed the exponential growth of Omicron over four-week periods in the two most populated of South Africa's provinces, Gauteng and KwaZulu-Natal, arriving at the doubling time estimates of, respectively, 3.3 days (95% CI: 3.2-3.4 days) and 2.7 days (95% CI: 2.3-3.3 days). Similar or even shorter doubling times were observed in other locations: Australia (3.0 days), New York State (2.5 days), UK (2.4 days), and Denmark (2.0 days). Log-linear regression suggests that the spread began in Gauteng around 11 October 2021; however, due to presumable stochasticity in the initial spread, this estimate can be inaccurate. Phylogenetics-based analysis indicates that the Omicron strain started to diverge between 6 October and 29 October 2021. We estimated that the weekly growth of the ratio of Omicron to Delta is in the range of 7.2-10.2, considerably higher than the growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5-4.2), and Alpha to pre-existing strains (estimated to be in the range of 1.8-2.7). High relative growth does not necessarily imply higher Omicron infectivity. A two-strain SEIR model suggests that the growth advantage of Omicron may stem from immune evasion, which permits this VOC to infect both recovered and fully vaccinated individuals. As we demonstrated within the model, immune evasion is more concerning than increased transmissibility, because it can facilitate larger epidemic outbreaks.


Asunto(s)
COVID-19/transmisión , Evasión Inmune , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Replicación Viral/inmunología , Australia/epidemiología , COVID-19/epidemiología , Genoma Viral , Humanos , New York/epidemiología , Filogenia , SARS-CoV-2/genética , Análisis de Secuencia de ADN/estadística & datos numéricos , Sudáfrica/epidemiología , Factores de Tiempo
10.
BMC Struct Biol ; 11: 34, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21923943

RESUMEN

BACKGROUND: Well-performing automated protein function recognition approaches usually comprise several complementary techniques. Beside constructing better consensus, their predictive power can be improved by either adding or refining independent modules that explore orthogonal features of proteins. In this work, we demonstrated how the exploration of global atomic distributions can be used to indicate functionally important residues. RESULTS: Using a set of carefully selected globular proteins, we parametrized continuous probability density functions describing preferred central distances of individual protein atoms. Relative preferred burials were estimated using mixture models of radial density functions dependent on the amino acid composition of a protein under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric methods. We also showed that the unexpectedness is a property of regions involved in protein-protein interactions, and thus can be used for the ranking of protein docking predictions. The computational approach implemented in this work is freely available via a Web interface at http://www.bioinformatics.org/surpresi. CONCLUSIONS: Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn out to be often directly involved in binding ligands or interfacing with other proteins.


Asunto(s)
Aminoácidos/química , Proteínas/química , Programas Informáticos , Sitios de Unión , Simulación por Computador , Ligandos , Mapeo de Interacción de Proteínas
11.
Sci Rep ; 11(1): 2425, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510274

RESUMEN

Countries worldwide have adopted various strategies to minimize the socio-economic impact of the ongoing COVID-19 pandemic. Stringency of imposed measures universally reflects the standpoint from which protecting public health and avoiding damage to economy are seen as contradictory objectives. Based on epidemic trajectories of 25 highly developed countries and 10 US states in the (mobility reduction)-(reproduction number) plane we showed that delay in imposition of nation-wide quarantine elevates the number of infections and deaths, surge of which inevitably has to be suppressed by stringent and sustained lockdown. As a consequence, cumulative mobility reduction and population-normalized cumulative number of COVID-19-associated deaths are significantly correlated and this correlation increases with time. Overall, we demonstrated that, as long as epidemic suppression is the aim, the trade-off between the death toll and economic loss is illusory: high death toll correlates with deep and long-lasting lockdown causing a severe economic downturn.


Asunto(s)
COVID-19/epidemiología , Cuarentena/economía , COVID-19/economía , Control de Enfermedades Transmisibles/métodos , Países Desarrollados/estadística & datos numéricos , Humanos , Pandemias/economía , Pandemias/prevención & control , Salud Pública , Cuarentena/estadística & datos numéricos , SARS-CoV-2/aislamiento & purificación , Estados Unidos/epidemiología
12.
Viruses ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804556

RESUMEN

The novel SARS-CoV-2 Variant of Concern (VOC)-202012/01 (also known as B.1.1.7), first collected in United Kingdom on 20 September 2020, is a rapidly growing lineage that in January 2021 constituted 86% of all SARS-CoV-2 genomes sequenced in England. The VOC has been detected in 40 out of 46 countries that reported at least 50 genomes in January 2021. We have estimated that the replicative advantage of the VOC is in the range 1.83-2.18 [95% CI: 1.71-2.40] with respect to the 20A.EU1 variant that dominated in England in November 2020, and in range 1.65-1.72 [95% CI: 1.46-2.04] in Wales, Scotland, Denmark, and USA. As the VOC strain will likely spread globally towards fixation, it is important to monitor its molecular evolution. We have estimated growth rates of expanding mutations acquired by the VOC lineage to find that the L18F substitution in spike has initiated a fast growing VOC substrain. The L18F substitution is of significance because it has been found to compromise binding of neutralizing antibodies. Of concern are immune escape mutations acquired by the VOC: E484K, F490S, S494P (in the receptor binding motif of spike) and Q677H, Q675H (in the proximity of the polybasic cleavage site at the S1/S2 boundary). These mutants may hinder efficiency of existing vaccines and expand in response to the increasing after-infection or vaccine-induced seroprevalence.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Replicación Viral , Secuencias de Aminoácidos , Humanos , Mutación , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
R Soc Open Sci ; 7(9): 200786, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047040

RESUMEN

The basic reproduction number R 0 of the coronavirus disease 2019 has been estimated to range between 2 and 4. Here, we used an SEIR model that properly accounts for the distribution of the latent period and, based on empirical estimates of the doubling time in the near-exponential phases of epidemic progression in China, Italy, Spain, France, UK, Germany, Switzerland and New York State, we estimated that R 0 lies in the range 4.7-11.4. We explained this discrepancy by performing stochastic simulations of model dynamics in a population with a small proportion of super-spreaders. The simulations revealed two-phase dynamics, in which an initial phase of relatively slow epidemic progression diverts to a faster phase upon appearance of infectious super-spreaders. Early estimates obtained for this initial phase may suggest lower R 0 .

14.
Chem Biodivers ; 6(12): 2311-36, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20020465

RESUMEN

The three-dimensional structures of a set of 'never born proteins' (NBP, random amino acid sequence proteins with no significant homology with known proteins) were predicted using two methods: Rosetta and the one based on the 'fuzzy-oil-drop' (FOD) model. More than 3000 different random amino acid sequences have been generated, filtered against the non redundant protein sequence data base, to remove sequences with significant homology with known proteins, and subjected to three-dimensional structure prediction. Comparison between Rosetta and FOD predictions allowed to select the ten top (highest structural similarity) and the ten bottom (the lowest structural similarity) structures from the ranking list organized according to the RMS-D value. The selected structures were taken for detailed analysis to define the scale of structural accordance and discrepancy between the two methods. The structural similarity measurements revealed discrepancies between structures generated on the basis of the two methods. Their potential biological function appeared to be quite different as well. The ten bottom structures appeared to be 'unfoldable' for the FOD model. Some aspects of the general characteristics of the NBPs are also discussed. The calculations were performed on the EUChinaGRID grid platform to test the performance of this infrastructure for massive protein structure predictions.


Asunto(s)
Modelos Moleculares , Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
15.
J R Soc Interface ; 16(152): 20180792, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30836891

RESUMEN

Two important signalling pathways of NF-κB and ERK transmit merely 1 bit of information about the level of extracellular stimulation. It is thus unclear how such systems can coordinate complex cell responses to external cues. We analyse information transmission in the MAPK/ERK pathway that converts both constant and pulsatile EGF stimulation into pulses of ERK activity. Based on an experimentally verified computational model, we demonstrate that, when input consists of sequences of EGF pulses, transmitted information increases nearly linearly with time. Thus, pulse-interval transcoding allows more information to be relayed than the amplitude-amplitude transcoding considered previously for the ERK and NF-κB pathways. Moreover, the information channel capacity C, or simply bitrate, is not limited by the bandwidth B = 1/ τ, where τ ≈ 1 h is the relaxation time. Specifically, when the input is provided in the form of sequences of short binary EGF pulses separated by intervals that are multiples of τ/ n (but not shorter than τ), then for n = 2, C ≈ 1.39 bit h-1; and for n = 4, C ≈ 1.86 bit h-1. The capability to respond to random sequences of EGF pulses enables cells to propagate spontaneous ERK activity waves across tissue.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Modelos Biológicos , Animales , Humanos
16.
PLoS Comput Biol ; 3(5): e94, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17530916

RESUMEN

A description of many biological processes requires knowledge of the 3-D structure of proteins and, in particular, the defined active site responsible for biological function. Many proteins, the genes of which have been identified as the result of human genome sequencing, and which were synthesized experimentally, await identification of their biological activity. Currently used methods do not always yield satisfactory results, and new algorithms need to be developed to recognize the localization of active sites in proteins. This paper describes a computational model that can be used to identify potential areas that are able to interact with other molecules (ligands, substrates, inhibitors, etc.). The model for active site recognition is based on the analysis of hydrophobicity distribution in protein molecules. It is shown, based on the analyses of proteins with known biological activity and of proteins of unknown function, that the region of significantly irregular hydrophobicity distribution in proteins appears to be function related.


Asunto(s)
Algoritmos , Lógica Difusa , Modelos Químicos , Modelos Moleculares , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Aceites/química , Unión Proteica
17.
Phys Rev E ; 98(2-1): 022401, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253540

RESUMEN

In bistable reaction-diffusion systems, transitions between stable states typically occur on timescales orders of magnitude longer than the chemical equilibration time. Estimation of transition rates within explicit Brownian dynamics simulations is computationally prohibitively costly. We present a method that exploits a single trajectory, generated by a prior simulation of diffusive motions of molecules, to sample chemical kinetic processes on timescales several orders of magnitude longer than the duration of the diffusive trajectory. In this approach, we "loop" the diffusive trajectory by transferring chemical states of the molecules from the last to the first time step of the trajectory. Trajectory looping can be applied to enhance sampling of rare events in biochemical systems in which the number of reacting molecules is constant, as in cellular signal transduction pathways. As an example, we consider a bistable system of autophosphorylating kinases, for which we calculate state-to-state transition rates and traveling wave velocities. We provide an open-source implementation of the method.

18.
Nat Commun ; 9(1): 493, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402958

RESUMEN

The innate immune system processes pathogen-induced signals into cell fate decisions. How information is turned to decision remains unknown. By combining stochastic mathematical modelling and experimentation, we demonstrate that feedback interactions between the IRF3, NF-κB and STAT pathways lead to switch-like responses to a viral analogue, poly(I:C), in contrast to pulse-like responses to bacterial LPS. Poly(I:C) activates both IRF3 and NF-κB, a requirement for induction of IFNß expression. Autocrine IFNß initiates a JAK/STAT-mediated positive-feedback stabilising nuclear IRF3 and NF-κB in first responder cells. Paracrine IFNß, in turn, sensitises second responder cells through a JAK/STAT-mediated positive feedforward pathway that upregulates the positive-feedback components: RIG-I, PKR and OAS1A. In these sensitised cells, the 'live-or-die' decision phase following poly(I:C) exposure is shorter-they rapidly produce antiviral responses and commit to apoptosis. The interlinked positive feedback and feedforward signalling is key for coordinating cell fate decisions in cellular populations restricting pathogen spread.


Asunto(s)
Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón beta/inmunología , Quinasas Janus/inmunología , FN-kappa B/inmunología , Factores de Transcripción STAT/inmunología , 2',5'-Oligoadenilato Sintetasa , Animales , Línea Celular , Proteína 58 DEAD Box/inmunología , Retroalimentación Fisiológica , Técnicas de Inactivación de Genes , Inmunidad Innata/efectos de los fármacos , Inductores de Interferón/farmacología , Factor 3 Regulador del Interferón/efectos de los fármacos , Ratones , FN-kappa B/efectos de los fármacos , Poli I-C/farmacología , Factor de Transcripción STAT1/genética , Transducción de Señal , Factor de Transcripción ReIA/genética , Regulación hacia Arriba , eIF-2 Quinasa/inmunología
19.
Sci Signal ; 10(469)2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270557

RESUMEN

Downstream of growth factor receptors and of the guanine triphosphatase (GTPase) RAS, heterodimers of the serine/threonine kinases BRAF and RAF1 are critical upstream kinases and activators of the mitogen-activated protein kinase (MAPK) module containing the mitogen-activated and extracellular signal-regulated kinase kinase (MEK) and their targets, the extracellular signal-regulated kinase (ERK) family. Either direct or scaffold protein-mediated interactions among the components of the ERK module (the MAPKKKs BRAF and RAF1, MEK, and ERK) facilitate signal transmission. RAF1 also has essential functions in the control of tumorigenesis and migration that are mediated through its interaction with the kinase ROKα, an effector of the GTPase RHO and regulator of cytoskeletal rearrangements. We combined mutational and kinetic analysis with mathematical modeling to show that the interaction of RAF1 with ROKα is coordinated with the role of RAF1 in the ERK pathway. We found that the phosphorylated form of RAF1 that interacted with and inhibited ROKα was generated during the interaction of RAF1 with the ERK module. This mechanism adds plasticity to the ERK pathway, enabling signal diversification at the level of both ERK and RAF. Furthermore, by connecting ERK activation with the regulation of ROKα and cytoskeletal rearrangements by RAF1, this mechanism has the potential to precisely coordinate the proper timing of proliferation with changes in cell shape, adhesion, or motility.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Células COS , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos/citología , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Ratones Noqueados , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Interferencia de ARN , Proteínas ras/genética , Quinasas Asociadas a rho/genética
20.
Sci Rep ; 7(1): 15926, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162874

RESUMEN

The NF-κB pathway is known to transmit merely 1 bit of information about stimulus level. We combined experimentation with mathematical modeling to elucidate how information about TNF concentration is turned into a binary decision. Using Kolmogorov-Smirnov distance, we quantified the cell's ability to discern 8 TNF concentrations at each step of the NF-κB pathway, to find that input discernibility decreases as signal propagates along the pathway. Discernibility of low TNF concentrations is restricted by noise at the TNF receptor level, whereas discernibility of high TNF concentrations it is restricted by saturation/depletion of downstream signaling components. Consequently, signal discernibility is highest between 0.03 and 1 ng/ml TNF. Simultaneous exposure to TNF or LPS and a translation inhibitor, cycloheximide, leads to prolonged NF-κB activation and a marked increase of transcript levels of NF-κB inhibitors, IκBα and A20. The impact of cycloheximide becomes apparent after the first peak of nuclear NF-κB translocation, meaning that the NF-κB network not only relays 1 bit of information to coordinate the all-or-nothing expression of early genes, but also over a longer time course integrates information about other stimuli. The NF-κB system should be thus perceived as a feedback-controlled decision-making module rather than a simple information transmission channel.


Asunto(s)
Procesamiento Automatizado de Datos , FN-kappa B/metabolismo , Transducción de Señal , Animales , Citoplasma/metabolismo , Fluorescencia , Lipopolisacáridos/farmacología , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA