Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718071

RESUMEN

With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Neovascularización Fisiológica , Repitelización , Regeneración , Piel , Cicatrización de Heridas , Heridas y Lesiones , Animales , Matriz Extracelular/metabolismo , Humanos , Piel/lesiones , Piel/metabolismo , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
2.
Cardiovasc Res ; 117(1): 256-270, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999325

RESUMEN

AIMS: Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells. METHODS AND RESULTS: We observed that overexpression of the vascular endothelial growth factor in the skeletal muscle potently stimulated angiogenesis, resulting in the formation of a massive number of new capillaries and arterioles. In contrast, response to the same dose of the same factor in the heart was blunted and consisted in a modest increase in the number of new arterioles. By using Apelin-CreER mice to genetically label sprouting endothelial cells we observed that different pro-angiogenic stimuli activated Apelin expression in both muscle types to a similar extent, however, only in the skeletal muscle, these cells were able to sprout, form elongated vascular tubes activating Notch signalling, and became incorporated into arteries. In the heart, Apelin-positive cells transiently persisted and failed to give rise to new vessels. When we implanted cancer cells in different organs, the abortive angiogenic response in the heart resulted in a reduced expansion of the tumour mass. CONCLUSION: Our genetic lineage tracing indicates that cardiac endothelial cells activate Apelin expression in response to pro-angiogenic stimuli but, different from those of the skeletal muscle, fail to proliferate and form mature and structured vessels. The poor angiogenic potential of the heart is associated with reduced tumour angiogenesis and growth of cancer cells.


Asunto(s)
Apelina/metabolismo , Linaje de la Célula , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Músculo Esquelético/irrigación sanguínea , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Neovascularización Fisiológica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apelina/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Microambiente Celular , Vasos Coronarios/citología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Carga Tumoral , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Cell Metab ; 33(9): 1793-1807.e9, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358431

RESUMEN

Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Adulto , Células Endoteliales/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Patológica/metabolismo
4.
JCI Insight ; 4(8)2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30996132

RESUMEN

Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-ß signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.


Asunto(s)
Fibrosis/tratamiento farmacológico , Haloperidol/farmacología , Miofibroblastos/efectos de los fármacos , Receptores sigma/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibrosis/patología , Haloperidol/uso terapéutico , Humanos , Microscopía Intravital/métodos , Pulmón/citología , Pulmón/patología , Ratones , Miocardio/citología , Miocardio/patología , Miofibroblastos/patología , Imagen Óptica/métodos , Cultivo Primario de Células , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Notch1/metabolismo , Receptores sigma/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Sigma-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA