Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(10): 1147-1158, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36108308

RESUMEN

Factor VIII (FVIII) circulates in a noncovalent complex with von Willebrand Factor (VWF), the latter determining FVIII half-life. The VWF-binding aptamer rondaptivon pegol (BT200) increases plasma levels of VWF/FVIII in healthy volunteers. This trial assessed its safety, pharmacokinetics, and pharmacodynamics in hemophilia A. Nineteen adult patients (ages 20-62 years, 4 women) with hemophilia A (8 mild, 2 moderate, and 9 severe) received subcutaneous injections of rondaptivon pegol. After an initial fixed dose of 3 mg on days 0 and 4, patients received weekly doses of 2 to 9 mg until day 28. Severe hemophilia A patients underwent sparse-sampling population pharmacokinetics individual profiling after the final dose of rondaptivon pegol. Adverse events, pharmacokinetics, and pharmacodynamics were assessed. FVIII activity and VWF levels were measured. All patients tolerated rondaptivon pegol well. The geometric mean half-life of rondaptivon pegol was 5.4 days and rondaptivon pegol significantly increased VWF levels. In severe hemophilia A, 6 doses of rondaptivon pegol increased the half-lives of 5 different FVIII products from a median of 10.4 hours to 31.1 hours (range, 20.8-56.0 hours). Median FVIII increased from 22% to 48% in mild hemophilia A and from 3% to 7.5% in moderate hemophilia A. Rondaptivon pegol is a first-in-class prohemostatic molecule that extended the half-life of substituted FVIII approximately 3-fold and increased endogenous FVIII levels approximately 2-fold in hemophilia patients. This trial was registered at www.clinicaltrials.gov as #NCT04677803.


Asunto(s)
Hemofilia A , Hemostáticos , Adulto , Humanos , Femenino , Adulto Joven , Persona de Mediana Edad , Factor de von Willebrand/uso terapéutico , Hemofilia A/tratamiento farmacológico , Factor VIII , Hemostáticos/uso terapéutico , Semivida
2.
J Hepatol ; 78(2): 442-447, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216134

RESUMEN

Non-alcoholic fatty liver disease is a condition that affects 25% of the population. Non-alcoholic steatohepatitis (NASH) is a progressive form of the disease that can lead to severe complications such as cirrhosis and hepatocellular carcinoma. Despite its high prevalence, no drugs are currently approved for the treatment of NASH. The drug development pipeline in NASH is very active, yet most assets do not progress to phase III trials and those that do reach phase III often fail to achieve the endpoints necessary for approval by regulatory agencies. Amongst other reasons, the methodological and operational features of traditional clinical trials in NASH might impede optimal drug development. In this regard, platform trials might be an attractive complement or alternative to conventional clinical trials. Platform trials use a master protocol which enables evaluation of multiple investigational medicinal products concurrently or sequentially with a single, shared control arm. Through Bayesian interim analyses, these trials allow for early exit of drugs from the trial based on success or futility, while providing participants better chances of receiving active compounds through adaptive randomisation. Overall, platform trials represent an alternative for patients, pharmaceutical companies, and clinicians in the quest to accelerate the approval of pharmacologic treatments for NASH.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Teorema de Bayes , Cirrosis Hepática/complicaciones , Fibrosis , Neoplasias Hepáticas/complicaciones
3.
Biostatistics ; 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36150142

RESUMEN

For randomized clinical trials where a single, primary, binary endpoint would require unfeasibly large sample sizes, composite endpoints (CEs) are widely chosen as the primary endpoint. Despite being commonly used, CEs entail challenges in designing and interpreting results. Given that the components may be of different relevance and have different effect sizes, the choice of components must be made carefully. Especially, sample size calculations for composite binary endpoints depend not only on the anticipated effect sizes and event probabilities of the composite components but also on the correlation between them. However, information on the correlation between endpoints is usually not reported in the literature which can be an obstacle for designing future sound trials. We consider two-arm randomized controlled trials with a primary composite binary endpoint and an endpoint that consists only of the clinically more important component of the CE. We propose a trial design that allows an adaptive modification of the primary endpoint based on blinded information obtained at an interim analysis. Especially, we consider a decision rule to select between a CE and its most relevant component as primary endpoint. The decision rule chooses the endpoint with the lower estimated required sample size. Additionally, the sample size is reassessed using the estimated event probabilities and correlation, and the expected effect sizes of the composite components. We investigate the statistical power and significance level under the proposed design through simulations. We show that the adaptive design is equally or more powerful than designs without adaptive modification on the primary endpoint. Besides, the targeted power is achieved even if the correlation is misspecified at the planning stage while maintaining the type 1 error. All the computations are implemented in R and illustrated by means of a peritoneal dialysis trial.

4.
BMC Med Res Methodol ; 22(1): 228, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35971069

RESUMEN

BACKGROUND: Platform trials can evaluate the efficacy of several experimental treatments compared to a control. The number of experimental treatments is not fixed, as arms may be added or removed as the trial progresses. Platform trials are more efficient than independent parallel group trials because of using shared control groups. However, for a treatment entering the trial at a later time point, the control group is divided into concurrent controls, consisting of patients randomised to control when that treatment arm is in the platform, and non-concurrent controls, patients randomised before. Using non-concurrent controls in addition to concurrent controls can improve the trial's efficiency by increasing power and reducing the required sample size, but can introduce bias due to time trends. METHODS: We focus on a platform trial with two treatment arms and a common control arm. Assuming that the second treatment arm is added at a later time, we assess the robustness of recently proposed model-based approaches to adjust for time trends when utilizing non-concurrent controls. In particular, we consider approaches where time trends are modeled either as linear in time or as a step function, with steps at time points where treatments enter or leave the platform trial. For trials with continuous or binary outcomes, we investigate the type 1 error rate and power of testing the efficacy of the newly added arm, as well as the bias and root mean squared error of treatment effect estimates under a range of scenarios. In addition to scenarios where time trends are equal across arms, we investigate settings with different time trends or time trends that are not additive in the scale of the model. RESULTS: A step function model, fitted on data from all treatment arms, gives increased power while controlling the type 1 error, as long as the time trends are equal for the different arms and additive on the model scale. This holds even if the shape of the time trend deviates from a step function when patients are allocated to arms by block randomisation. However, if time trends differ between arms or are not additive to treatment effects in the scale of the model, the type 1 error rate may be inflated. CONCLUSIONS: The efficiency gained by using step function models to incorporate non-concurrent controls can outweigh potential risks of biases, especially in settings with small sample sizes. Such biases may arise if the model assumptions of equality and additivity of time trends are not satisfied. However, the specifics of the trial, scientific plausibility of different time trends, and robustness of results should be carefully considered.


Asunto(s)
Tamaño de la Muestra , Sesgo , Humanos
5.
Infection ; 49(5): 907-916, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33983624

RESUMEN

BACKGROUND: COVID-19 is regularly compared to influenza. Mortality and case-fatality rates vary widely depending on incidence of COVID-19 and the testing policy in affected countries. To date, data comparing hospitalized patients with COVID-19 and influenza is scarce. METHODS: Data from patients with COVID-19 were compared to patients infected with influenza A (InfA) and B (InfB) virus during the 2017/18 and 2018/19 seasons. All patients were ≥ 18 years old, had PCR-confirmed infection and needed hospital treatment. Demographic data, medical history, length-of-stay (LOS), complications including in-hospital mortality were analyzed. RESULTS: In total, 142 patients with COVID-19 were compared to 266 patients with InfA and 300 with InfB. Differences in median age (COVID-19 70.5 years vs InfA 70 years and InfB 77 years, p < 0.001) and laboratory results were observed. COVID-19 patients had fewer comorbidities, but complications (respiratory insufficiency, pneumonia, acute kidney injury, acute heart failure and death) occurred more frequently. Median length-of-stay (LOS) was longer in COVID-19 patients (12 days vs InfA 7 days vs. InfB 7 days, p < 0.001). There was a fourfold higher in-hospital mortality in COVID-19 patients (23.2%) when compared with InfA (5.6%) or InfB (4.7%; p < 0.001). CONCLUSION: In hospitalized patients, COVID-19 is associated with longer LOS, a higher number of complications and higher in-hospital mortality compared to influenza, even in a population with fewer co-morbidities. This data, a high reproduction number and limited treatment options, alongside excess mortality during the SARS-CoV-2 pandemic, support the containment strategies implemented by most authorities.


Asunto(s)
COVID-19 , Gripe Humana , Adolescente , Austria , Hospitalización , Humanos , Gripe Humana/epidemiología , Pandemias , SARS-CoV-2
6.
Clin Trials ; 17(5): 472-482, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32674594

RESUMEN

BACKGROUND: Endpoint choice for randomized controlled trials of treatments for novel coronavirus-induced disease (COVID-19) is complex. Trials must start rapidly to identify treatments that can be used as part of the outbreak response, in the midst of considerable uncertainty and limited information. COVID-19 presentation is heterogeneous, ranging from mild disease that improves within days to critical disease that can last weeks to over a month and can end in death. While improvement in mortality would provide unquestionable evidence about the clinical significance of a treatment, sample sizes for a study evaluating mortality are large and may be impractical, particularly given a multitude of putative therapies to evaluate. Furthermore, patient states in between "cure" and "death" represent meaningful distinctions. Clinical severity scores have been proposed as an alternative. However, the appropriate summary measure for severity scores has been the subject of debate, particularly given the variable time course of COVID-19. Outcomes measured at fixed time points, such as a comparison of severity scores between treatment and control at day 14, may risk missing the time of clinical benefit. An endpoint such as time to improvement (or recovery) avoids the timing problem. However, some have argued that power losses will result from reducing the ordinal scale to a binary state of "recovered" versus "not recovered." METHODS: We evaluate statistical power for possible trial endpoints for COVID-19 treatment trials using simulation models and data from two recent COVID-19 treatment trials. RESULTS: Power for fixed time-point methods depends heavily on the time selected for evaluation. Time-to-event approaches have reasonable statistical power, even when compared with a fixed time-point method evaluated at the optimal time. DISCUSSION: Time-to-event analysis methods have advantages in the COVID-19 setting, unless the optimal time for evaluating treatment effect is known in advance. Even when the optimal time is known, a time-to-event approach may increase power for interim analyses.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2
7.
BMC Med ; 16(1): 210, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30442137

RESUMEN

BACKGROUND: Adequate reporting of adaptive designs (ADs) maximises their potential benefits in the conduct of clinical trials. Transparent reporting can help address some obstacles and concerns relating to the use of ADs. Currently, there are deficiencies in the reporting of AD trials. To overcome this, we have developed a consensus-driven extension to the CONSORT statement for randomised trials using an AD. This paper describes the processes and methods used to develop this extension rather than detailed explanation of the guideline. METHODS: We developed the guideline in seven overlapping stages: 1) Building on prior research to inform the need for a guideline; 2) A scoping literature review to inform future stages; 3) Drafting the first checklist version involving an External Expert Panel; 4) A two-round Delphi process involving international, multidisciplinary, and cross-sector key stakeholders; 5) A consensus meeting to advise which reporting items to retain through voting, and to discuss the structure of what to include in the supporting explanation and elaboration (E&E) document; 6) Refining and finalising the checklist; and 7) Writing-up and dissemination of the E&E document. The CONSORT Executive Group oversaw the entire development process. RESULTS: Delphi survey response rates were 94/143 (66%), 114/156 (73%), and 79/143 (55%) in rounds 1, 2, and across both rounds, respectively. Twenty-seven delegates from Europe, the USA, and Asia attended the consensus meeting. The main checklist has seven new and nine modified items and six unchanged items with expanded E&E text to clarify further considerations for ADs. The abstract checklist has one new and one modified item together with an unchanged item with expanded E&E text. The E&E document will describe the scope of the guideline, the definition of an AD, and some types of ADs and trial adaptations and explain each reporting item in detail including case studies. CONCLUSIONS: We hope that making the development processes, methods, and all supporting information that aided decision-making transparent will enhance the acceptability and quick uptake of the guideline. This will also help other groups when developing similar CONSORT extensions. The guideline is applicable to all randomised trials with an AD and contains minimum reporting requirements.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto/normas , Proyectos de Investigación/normas , Asia , Lista de Verificación , Consenso , Técnicas de Apoyo para la Decisión , Europa (Continente) , Humanos
8.
Stat Med ; 37(29): 4335-4352, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30088280

RESUMEN

Population heterogeneity is frequently observed among patients' treatment responses in clinical trials because of various factors such as clinical background, environmental, and genetic factors. Different subpopulations defined by those baseline factors can lead to differences in the benefit or safety profile of a therapeutic intervention. Ignoring heterogeneity between subpopulations can substantially impact on medical practice. One approach to address heterogeneity necessitates designs and analysis of clinical trials with subpopulation selection. Several types of designs have been proposed for different circumstances. In this work, we discuss a class of designs that allow selection of a predefined subgroup. Using the selection based on the maximum test statistics as the worst-case scenario, we then investigate the precision and accuracy of the maximum likelihood estimator at the end of the study via simulations. We find that the required sample size is chiefly determined by the subgroup prevalence and show in simulations that the maximum likelihood estimator for these designs can be substantially biased.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Selección de Paciente , Sesgo , Humanos , Funciones de Verosimilitud , Modelos Estadísticos , Tamaño de la Muestra
9.
Stat Med ; 37(24): 3387-3402, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29945304

RESUMEN

Adaptive enrichment designs have recently received considerable attention as they have the potential to make drug development process for personalized medicine more efficient. Several statistical approaches have been proposed so far in the literature and the operating characteristics of these approaches are extensively investigated using simulation studies. In this paper, we improve on existing adaptive enrichment designs by assigning unequal weights to the significance levels associated with the hypotheses of the overall population and a prespecified subgroup. More specifically, we focus on the standard combination test, a modified combination test, the marginal combination test, and the partial conditional error rate approach and explore the operating characteristics of these approaches by a simulation study. We show that these approaches can lead to power gains, compared to existing approaches, if the weights are chosen carefully.


Asunto(s)
Ensayos Clínicos Adaptativos como Asunto/estadística & datos numéricos , Biomarcadores/análisis , Bioestadística , Neoplasias de la Mama/tratamiento farmacológico , Simulación por Computador , Interpretación Estadística de Datos , Desarrollo de Medicamentos/estadística & datos numéricos , Determinación de Punto Final/estadística & datos numéricos , Femenino , Humanos , Modelos Estadísticos , Medicina de Precisión/estadística & datos numéricos , Resultado del Tratamiento
10.
Br J Clin Pharmacol ; 84(7): 1415-1431, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575017

RESUMEN

AIM: Sponsors and regulators have more than 10 years of experience with the development of biosimilars in Europe. However, the regulatory pathway is still evolving. The present article provides an update on biosimilar development in practice by reviewing the clinical development programmes of recently approved biosimilars in Europe. METHODS: We used the European public assessment reports (EPARs) which are published by the European Medicines Agency (EMA) for a comparison of the clinical development programmes of the 37 approved biosimilars in Europe. Here, we present novel strategies in the development of biosimilars by focusing specifically on the 17 biosimilars that have gained approval in the last year, but we also compare additional key characteristics for all approved biosimilars. RESULTS: The high variability of the clinical development strategies that we found previously was confirmed in the present analysis. Compared with earlier biosimilar applications, more nonstandard development strategies have been used recently. This includes, for example, applications without any studies in patients, and more complex study designs. During this study, we found that the EPARs for biosimilars seem to be improving; however, we identified important details which were still often missing. We provide a proposal for a checklist of the minimum information that should be included in biosimilar EPARs for giving the general public insights into the rationale for the approval of biosimilars. CONCLUSIONS: European regulators still seem to be open to consider approaches that differ from the guidelines or previous applications, as long as justification is provided.


Asunto(s)
Biosimilares Farmacéuticos , Aprobación de Drogas , Desarrollo de Medicamentos/normas , Estudios de Equivalencia como Asunto , Proyectos de Investigación/normas , Europa (Continente) , Humanos , Guías de Práctica Clínica como Asunto
11.
Stat Med ; 35(13): 2117-32, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26753552

RESUMEN

A full independent drug development programme to demonstrate efficacy may not be ethical and/or feasible in small populations such as paediatric populations or orphan indications. Different levels of extrapolation from a larger population to smaller target populations are widely used for supporting decisions in this situation. There are guidance documents in drug regulation, where a weakening of the statistical rigour for trials in the target population is mentioned to be an option for dealing with this problem. To this end, we propose clinical trials designs, which make use of prior knowledge on efficacy for inference. We formulate a framework based on prior beliefs in order to investigate when the significance level for the test of the primary endpoint in confirmatory trials can be relaxed (and thus the sample size can be reduced) in the target population while controlling a certain posterior belief in effectiveness after rejection of the null hypothesis in the corresponding confirmatory statistical test. We show that point-priors may be used in the argumentation because under certain constraints, they have favourable limiting properties among other types of priors. The crucial quantity to be elicited is the prior belief in the possibility of extrapolation from a larger population to the target population. We try to illustrate an existing decision tree for extrapolation to paediatric populations within our framework. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Estadística como Asunto , Niño , Interpretación Estadística de Datos , Árboles de Decisión , Humanos , Tamaño de la Muestra , Resultado del Tratamiento
12.
Br J Clin Pharmacol ; 82(6): 1444-1457, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27580073

RESUMEN

AIM: In 2006, Omnitrope (by Sandoz) was the first approved biosimilar in Europe. To date, 21 biosimilars for seven different biologics are on the market. The present study compared the clinical trials undertaken to obtain market authorization. METHODS: We summarized the findings of a comprehensive review of all clinical trials up to market authorization of approved biosimilars, using the European public assessment reports (EPARs) published by the European Medicines Agency (EMA). The features compared were, among others, the number of patients enrolled, the number of trials, the types of trial design, choice of endpoints and equivalence margins for pharmacokinetic (PK)/pharmacodynamic (PD) and phase III trials. RESULTS: The variability between the clinical development strategies is high. Some differences are explainable by the characteristics of the product; if, for example, the PD marker can be assumed to predict the clinical outcome, no efficacy trials might be necessary. However, even for products with the same reference product, the sample size, endpoints and statistical models are not always the same. CONCLUSIONS: There seems to be flexibility for sponsors regarding the decision as to how best to prove biosimilarity.


Asunto(s)
Biosimilares Farmacéuticos/uso terapéutico , Ensayos Clínicos como Asunto , Biosimilares Farmacéuticos/farmacocinética , Biosimilares Farmacéuticos/farmacología , Aprobación de Drogas , Determinación de Punto Final , Unión Europea , Humanos , Proyectos de Investigación , Tamaño de la Muestra , Resultado del Tratamiento
14.
Clin Trials ; 17(5): 567-569, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32666814
15.
Biom J ; 57(1): 76-89, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25399844

RESUMEN

If the response to treatment depends on genetic biomarkers, it is important to identify predictive biomarkers that define (sub-)populations where the treatment has a positive benefit risk balance. One approach to determine relevant subpopulations are subgroup analyses where the treatment effect is estimated in biomarker positive and biomarker negative groups. Subgroup analyses are challenging because several types of risks are associated with inference on subgroups. On the one hand, by disregarding a relevant subpopulation a treatment option may be missed due to a dilution of the treatment effect in the full population. Furthermore, even if the diluted treatment effect can be demonstrated in an overall population, it is not ethical to treat patients that do not benefit from the treatment when they can be identified in advance. On the other hand, selecting a spurious subpopulation increases the risk to restrict an efficacious treatment to a too narrow fraction of a potential benefiting population. We propose to quantify these risks with utility functions and investigate nonadaptive study designs that allow for inference on subgroups using multiple testing procedures as well as adaptive designs, where subgroups may be selected in an interim analysis. The characteristics of such adaptive and nonadaptive designs are compared for a range of scenarios.


Asunto(s)
Biometría/métodos , Biomarcadores/metabolismo , Ensayos Clínicos como Asunto , Humanos , Medición de Riesgo , Resultado del Tratamiento
16.
Biom J ; 57(1): 8-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24942505

RESUMEN

In recent months one of the most controversially discussed topics among regulatory agencies, the pharmaceutical industry, journal editors, and academia has been the sharing of patient-level clinical trial data. Several projects have been started such as the European Medicines Agency´s (EMA) "proactive publication of clinical trial data", the BMJ open data campaign, or the AllTrials initiative. The executive director of the EMA, Dr. Guido Rasi, has recently announced that clinical trial data on patient level will be published from 2014 onwards (although it has since been delayed). The EMA draft policy on proactive access to clinical trial data was published at the end of June 2013 and open for public consultation until the end of September 2013. These initiatives will change the landscape of drug development and publication of medical research. They provide unprecedented opportunities for research and research synthesis, but pose new challenges for regulatory authorities, sponsors, scientific journals, and the public. Besides these general aspects, data sharing also entails intricate biostatistical questions such as problems of multiplicity. An important issue in this respect is the interpretation of multiple statistical analyses, both prospective and retrospective. Expertise in biostatistics is needed to assess the interpretation of such multiple analyses, for example, in the context of regulatory decision-making by optimizing procedural guidance and sophisticated analysis methods.


Asunto(s)
Ensayos Clínicos como Asunto , Difusión de la Información/métodos , Bioestadística , Humanos , Publicaciones Periódicas como Asunto , Políticas
17.
Pharm Stat ; 13(6): 345-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25319733

RESUMEN

Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid-trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations.


Asunto(s)
Ensayos Clínicos como Asunto/estadística & datos numéricos , Proyectos de Investigación/estadística & datos numéricos , Ensayos Clínicos como Asunto/métodos , Humanos
19.
Biom J ; 56(4): 614-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24753160

RESUMEN

Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate.


Asunto(s)
Biometría/métodos , Ensayos Clínicos como Asunto/métodos , Proyectos de Investigación , Toma de Decisiones , Humanos , Tamaño de la Muestra
20.
EClinicalMedicine ; 67: 102384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226342

RESUMEN

Platform trials bring the promise of making clinical research more efficient and more patient centric. While their use has become more widespread, including their prominent role during the COVID-19 pandemic response, broader adoption of platform trials has been limited by the lack of experience and tools to navigate the critical upfront planning required to launch such collaborative studies. The European Union-Patient-cEntric clinicAl tRial pLatform (EU-PEARL) initiative has produced new methodologies to expand the use of platform trials with an overarching infrastructure and services embedded into Integrated Research Platforms (IRPs), in collaboration with patient representatives and through consultation with U.S. Food and Drug Administration and European Medicines Agency stakeholders. In this narrative review, we discuss the outlook for platform trials in Europe, including challenges related to infrastructure, design, adaptations, data sharing and regulation. Documents derived from the EU-PEARL project, alongside a literature search including PubMed and relevant grey literature (e.g., guidance from regulatory agencies and health technology agencies) were used as sources for a multi-stage collaborative process through which the 10 more important points based on lessons drawn from the EU-PEARL project were developed and summarised as guidance for the setup of platform trials. We conclude that early involvement of critical stakeholder such as regulatory agencies or patients are critical steps in the implementation and later acceptance of platform trials. Addressing these gaps will be critical for attaining the full potential of platform trials for patients. Funding: Innovative Medicines Initiative 2 Joint Undertaking with support from the European Union's Horizon 2020 research and innovation programme and EFPIA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA