Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 81: 238-248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160746

RESUMEN

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutámico , Ácido Poliglutámico/genética , Ligasas/metabolismo , Glucosa/metabolismo
2.
Appl Environ Microbiol ; 90(3): e0207923, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349148

RESUMEN

Anthocyanin cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis in Escherichia coli is a promising and efficient way toward large-scale production. The current production titer is low partly due to the accumulation of C3G inside the producing microbes; thus, it is important to explore native transporters responsible for anthocyanin secretion. Currently, there has been only one native E. coli transporter identified with C3G-transporting capability, and its overexpression has a very limited effect on the promotion of extracellular C3G production. In this study, we report the identification and verification of an efficient intrinsic C3G efflux transporter MdtH in E. coli through transcriptomic analysis and genetic/biochemical studies. MdtH could bind C3G with high affinity, and its overexpression increased the extracellular C3G biosynthesis in E. coli by 110%. Our study provides a new regulation target for microbial biosynthesis of C3G and other anthocyanins. IMPORTANCE: Cyanidin 3-O-glucoside (C3G) is a natural colorant with health-promoting activities and is, hence, widely used in food, cosmetic, and nutraceutical industries. Its market supply is currently dependent on extraction from plants. As an alternative, C3G can be produced by the microbe Escherichia coli in a green and sustainable way. However, a large portion of this compound is retained inside the cell of E. coli, thus complicating the purification process and limiting the high-level production. We have identified and verified an efficient native transporter named MdtH in E. coli that can export C3G to the cultivation medium. Overexpression of MdtH could improve extracellular C3G production by 110% without modifications of the metabolic pathway genes or enzymes. This study reveals a new regulation target for C3G production in bacteria and provides guidance to the microbial biosynthesis of related compounds.


Asunto(s)
Antocianinas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Glucósidos/metabolismo , Transporte Biológico
3.
Appl Environ Microbiol ; 90(2): e0216923, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38289128

RESUMEN

As advances are made toward the industrial feasibility of mass-producing biofuels and commodity chemicals with sugar-fermenting microbes, high feedstock costs continue to inhibit commercial application. Hydrolyzed lignocellulosic biomass represents an ideal feedstock for these purposes as it is cheap and prevalent. However, many microbes, including Escherichia coli, struggle to efficiently utilize this mixture of hexose and pentose sugars due to the regulation of the carbon catabolite repression (CCR) system. CCR causes a sequential utilization of sugars, rather than simultaneous utilization, resulting in reduced carbon yield and complex process implications in fed-batch fermentation. A mutant of the gene encoding the cyclic AMP receptor protein, crp*, has been shown to disable CCR and improve the co-utilization of mixed sugar substrates. Here, we present the strain construction and characterization of a site-specific crp* chromosomal mutant in E. coli BL21 star (DE3). The crp* mutant strain demonstrates simultaneous consumption of glucose and xylose, suggesting a deregulated CCR system. The proteomics further showed that glucose was routed to the C5 carbon utilization pathways to support both de novo nucleotide synthesis and energy production in the crp* mutant strain. Metabolite analyses further show that overflow metabolism contributes to the slower growth in the crp* mutant. This highly characterized strain can be particularly beneficial for chemical production by simultaneously utilizing both C5 and C6 substrates from lignocellulosic biomass.IMPORTANCEAs the need for renewable biofuel and biochemical production processes continues to grow, there is an associated need for microbial technology capable of utilizing cheap, widely available, and renewable carbon substrates. This work details the construction and characterization of the first B-lineage Escherichia coli strain with mutated cyclic AMP receptor protein, Crp*, which deregulates the carbon catabolite repression (CCR) system and enables the co-utilization of multiple sugar sources in the growth medium. In this study, we focus our analysis on glucose and xylose utilization as these two sugars are the primary components in lignocellulosic biomass hydrolysate, a promising renewable carbon feedstock for industrial bioprocesses. This strain is valuable to the field as it enables the use of mixed sugar sources in traditional fed-batch based approaches, whereas the wild-type carbon catabolite repression system leads to biphasic growth and possible buildup of non-preferential sugars, reducing process efficiency at scale.


Asunto(s)
Represión Catabólica , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Xilosa/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Azúcares/metabolismo , Fermentación , Carbono/metabolismo
4.
Glycobiology ; 32(11): 921-932, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-35925816

RESUMEN

N-glycolylated carbohydrates are amino sugars with an N-glycolyl amide group. These glycans have not been well studied due to their surprising rarity in nature in comparison with N-acetylated carbohydrates. Recently, however, there has been increasing interest in N-glycolylated sugars because the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc), apparently the only source of all N-glycolylated sugars in deuterostomes, appears to be involved in xenosialitis (inflammation associated with consumption of Neu5Gc-rich red meats). Xenosialitis has been implicated in cancers as well as other diseases including atherosclerosis. Furthermore, metabolites of Neu5Gc have been shown to be incorporated into glycosaminoglycans (GAGs), resulting in N-glycolylated GAGs. These N-glycolylated GAGs have important potential applications, such as dating the loss of the Neu5Gc-generating CMAH gene in humans and being explored as a xenosialitis biomarker and/or estimate of the body burden of diet-derived Neu5Gc, to understand the risks associated with the consumption of red meats. This review explores N-glycolylated carbohydrates, how they are metabolized to N-glycolylglucosamine and N-glycolylgalactosamine, and how these metabolites can be incorporated into N-glycolylated GAGs in human tissues. We also discuss other sources of N-glycolylated sugars, such as recombinant production from microorganisms using metabolic engineering as well as chemical synthesis.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Neuramínicos , Humanos , Ácido N-Acetilneuramínico/metabolismo , Amino Azúcares , Polisacáridos , Inflamación
5.
Microb Cell Fact ; 21(1): 86, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568867

RESUMEN

BACKGROUND: Eriodictyol is a bioactive flavonoid compound that shows potential applications in medicine development and food processing. Microbial synthesis of eriodictyol has been attracting increasing attention due to several benefits. In this study, we employed a GRAS strain Corynebacterium glutamicum as the host to produce eriodictyol directly from tyrosine. RESULTS: We firstly optimized the biosynthetic module of naringenin, the upstream intermediate for eriodictyol production, through screening of different gene orthologues. Next, to improve the level of the precursor malonyl-CoA necessary for naringenin production, we introduced matB and matC from Rhizobium trifolii into C. glutamicum to convert extracellular malonate to intracellular malonyl-CoA. This combinatorial engineering resulted in around 35-fold increase in naringenin production from tyrosine compared to the initial recombinant C. glutamicum. Subsequently, the hpaBC genes from E. coli encoding 4-hydroxyphenylacetate 3-hydroxylase were expressed in C. glutamicum to synthesize eriodictyol from naringenin. Further optimization of the biotransformation process parameters led to the production of 14.10 mg/L eriodictyol. CONCLUSIONS: The biosynthesis of the ortho-hydroxylated flavonoid eriodictyol in C. glutamicum was achieved for the first time via functional expression of E. coli hpaBC, providing a baseline strain for biosynthesis of other complex flavonoids. Our study demonstrates the potential application of C. glutamicum as a host microbe for the biosynthesis of value-added natural compounds from tyrosine.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavanonas , Flavonoides/metabolismo , Malonil Coenzima A/metabolismo , Ingeniería Metabólica/métodos , Tirosina/metabolismo
6.
Microb Cell Fact ; 21(1): 3, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983533

RESUMEN

BACKGROUND: The limitation of storage space, product cytotoxicity and the competition for precursor are the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve ß-carotene accumulation in Saccharomyces cerevisiae, a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches. RESULTS: The direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of ß-carotene in S. cerevisiae. However, due to the competition for precursor between ß-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on ß-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in ß-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to ß-carotene pathway and achieved additional 31.7% increase in ß-carotene content without adversely affecting cell growth. By inducing an extra constitutive ß-carotene synthesis pathway for further conversion precursor farnesol to ß-carotene, the final strain produced 11.4 mg/g DCW and 142 mg/L of ß-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. CONCLUSIONS: This strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/genética , Regulación Fúngica de la Expresión Génica , Gotas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo , beta Caroteno/biosíntesis , Ingeniería Metabólica/métodos , beta Caroteno/análisis , beta Caroteno/genética
7.
Metab Eng ; 67: 417-427, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416365

RESUMEN

Recombinant microbes have emerged as promising alternatives to natural sources of naringenin-a key molecular scaffold for flavonoids. In recombinant strains, expression levels of the pathway genes should be optimized at both transcription and the translation stages to precisely allocate cellular resources and maximize metabolite production. However, the optimization of the expression levels of naringenin generally relies on evaluating a small number of variants from libraries constructed by varying transcription efficiency only. In this study, we introduce a systematic strategy for the multi-level optimization of biosynthetic pathways. We constructed a multi-level combinatorial library covering both transcription and translation stages using synthetic T7 promoter variants and computationally designed 5'-untranslated regions. Furthermore, we identified improved strains through high-throughput screening based on a synthetic naringenin riboswitch. The most-optimized strain obtained using this approach exhibited a 3-fold increase in naringenin production, compared with the parental strain in which only the transcription efficiency was modulated. Furthermore, in a fed-batch bioreactor, the optimized strain produced 260.2 mg/L naringenin, which is the highest concentration reported to date using glycerol and p-coumaric acid as substrates. Collectively, this work provides an efficient strategy for the expression optimization of the biosynthetic pathways.


Asunto(s)
Flavanonas , Riboswitch , Ensayos Analíticos de Alto Rendimiento , Ingeniería Metabólica
8.
Metab Eng ; 64: 15-25, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33454430

RESUMEN

Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging from the pharma industry to the development of microbial fuel cells. Nevertheless, pyocyanin production has been restricted to P. aeruginosa strains, limiting its practical applicability. In this study, the pyocyanin biosynthetic pathway was engineered for the first time for high level production of this compound in a heterologous host. Escherichia coli cells harboring the nine-gene pathway divided into two plasmids were able to produce and secrete pyocyanin at higher levels than some Pseudomonas aeruginosa strains. The influence of culture and induction parameters were evaluated, and the optimized conditions led to an increase of 3.5-fold on pyocyanin accumulation. Pathway balancing was achieved by testing a set of plasmids with different copy numbers to optimize the expression levels of pyocyanin biosynthetic genes, resulting in a fourfold difference in product titer among the engineered strains. Further improvements were achieved by co-expression of Vitreoscilla hemoglobin Vhb, which relieved oxygen limitations and led to a final titer of 18.8 mg/L pyocyanin. These results show promise to use E. coli for phenazines production, and the engineered strain developed here has the potential to be used in electro-fermentation systems where pyocyanin plays a role as electron-shuttle.


Asunto(s)
Escherichia coli , Piocianina , Escherichia coli/genética , Ingeniería Metabólica , Fenazinas , Pseudomonas aeruginosa/genética , Piocianina/genética
9.
Appl Microbiol Biotechnol ; 105(13): 5565-5575, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34215904

RESUMEN

Most of the oleaginous microorganisms cannot assimilate xylose in the presence of glucose, which is the major bottleneck in the bioconversion of lignocellulose to biodiesel. Our present study revealed that overexpression of xylose isomerase (XI) gene xylA or xylulokinase (XK) gene xks1 increased the xylose consumption by 25 to 37% and enhanced the lipid content by 8 to 28% during co-fermentation of glucose and xylose. In xylA overexpressing strain Mc-XI, the activity of XI was 1.8-fold higher and the mRNA level of xylA at 24 h and 48 h was 11- and 13-fold higher than that of the control, respectively. In xks1 overexpressing strain Mc-XK, the mRNA level of xks1 was 4- to 11-fold of that of the control strain and the highest XK activity of 950 nmol min-1 mg-1 at 72 h which was 2-fold higher than that of the control. Additionally, expression of a translational fusion of xylA and xks1 further enhanced the xylose utilization rate by 45%. Our results indicated that overexpression of xylA and/or xks1 is a promising strategy to improve the xylose and glucose co-utilization, alleviate the glucose repression, and produce lipid from lignocellulosic biomass in the oleaginous fungus M. circinelloides. KEY POINTS: • Overexpressing xylA or xks1 increased the xylose consumption and the lipid content. • The xylose isomerase activity and the xylA mRNA level were enhanced in strain Mc-XI. • Co-expression of xylA and xks1 further enhanced the xylose utilization rate by 45%.


Asunto(s)
Glucosa , Xilosa , Isomerasas Aldosa-Cetosa , Fermentación , Mucor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)
10.
Microb Cell Fact ; 19(1): 115, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471433

RESUMEN

BACKGROUND: L-Serine has wide and increasing applications in industries with fast-growing market demand. Although strategies for achieving and improving L-serine production in Corynebacterium glutamicum (C. glutamicum) have focused on inhibiting its degradation and enhancing its biosynthetic pathway, L-serine yield has remained relatively low. Exporters play an essential role in the fermentative production of amino acids. To achieve higher L-serine yield, L-serine export from the cell should be improved. In C. glutamicum, ThrE, which can export L-threonine and L-serine, is the only identified L-serine exporter so far. RESULTS: In this study, a novel L-serine exporter NCgl0580 was identified and characterized in C. glutamicum ΔSSAAI (SSAAI), and named as SerE (encoded by serE). Deletion of serE in SSAAI led to a 56.5% decrease in L-serine titer, whereas overexpression of serE compensated for the lack of serE with respect to L-serine titer. A fusion protein with SerE and enhanced green fluorescent protein (EGFP) was constructed to confirm that SerE localized at the plasma membrane. The function of SerE was studied by peptide feeding approaches, and the results showed that SerE is a novel exporter for L-serine and L-threonine in C. glutamicum. Subsequently, the interaction of a known L-serine exporter ThrE and SerE was studied, and the results suggested that SerE is more important than ThrE in L-serine export in SSAAI. In addition, probe plasmid and electrophoretic mobility shift assays (EMSA) revealed NCgl0581 as the transcriptional regulator of SerE. Comparative transcriptomics between SSAAI and the NCgl0581 deletion strain showed that NCgl0581 is a positive regulator of NCgl0580. Finally, by overexpressing the novel exporter SerE, combined with L-serine synthetic pathway key enzyme serAΔ197, serC, and serB, the resulting strain presented an L-serine titer of 43.9 g/L with a yield of 0.44 g/g sucrose, which is the highest L-serine titer and yield reported so far in C. glutamicum. CONCLUSIONS: This study provides a novel target for L-serine and L-threonine export engineering as well as a new global transcriptional regulator NCgl0581 in C. glutamicum.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/metabolismo , Serina/biosíntesis
11.
Appl Microbiol Biotechnol ; 104(11): 4849-4861, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32285175

RESUMEN

Flavonoids are a large family of plant and fungal natural products, among which many have been found to possess outstanding biological activities. Utilization of engineered microbes as surrogate hosts for heterologous biosynthesis of flavonoids has been investigated extensively. However, current microbial biosynthesis strategies mostly rely on using one microbial strain to accommodate the long and complicated flavonoid pathways, which presents a major challenge for production optimization. Here, we adapt the emerging modular co-culture engineering approach to rationally design, establish and optimize an Escherichia coli co-culture for de novo biosynthesis of flavonoid sakuranetin from simple carbon substrate glucose. Specifically, two E. coli strains were employed to accommodate the sakuranetin biosynthesis pathway. The upstream strain was engineered for pathway intermediate p-coumaric acid production, whereas the downstream strain converted p-coumaric acid to sakuranetin. Through step-wise optimization of the co-culture system, we were able to produce 29.7 mg/L sakuranetin from 5 g/L glucose within 48 h, which is significantly higher than the production by the conventional monoculture-based approach. The co-culture biosynthesis was successfully scaled up in a fed-batch bioreactor, resulting in the production of 79.0 mg/L sakuranetin. To our knowledge, this is the highest bioproduction concentration reported so far for de novo sakuranetin biosynthesis using the heterologous host E. coli. The findings of this work expand the applicability of modular co-culture engineering for addressing the challenges associated with heterologous biosynthesis of complex natural products. KEY POINTS: • De novo biosynthesis of sakuranetin was achieved using E. coli-E. coli co-cultures. • Sakuranetin production by co-cultures was significantly higher than the mono-culture controls. • The co-culture system was optimized by multiple metabolic engineering strategies. • The co-culture biosynthesis was scaled up in fed-batch bioreactor.


Asunto(s)
Productos Biológicos/metabolismo , Escherichia coli/metabolismo , Flavonoides/biosíntesis , Ingeniería Metabólica/métodos , Reactores Biológicos , Vías Biosintéticas , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Flavonoides/metabolismo , Glucosa/metabolismo
12.
Biotechnol Lett ; 42(11): 2413-2423, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32661657

RESUMEN

OBJECTIVES: To identify the zinc transport function of the membrane proteins Gt1 and Zrt1 in Komagataella phaffii (Pichia pastoris) and study their regulatory mode. RESULTS: Two membrane proteins that might have zinc transport function were found in K. phaffii. GT1 was known to encode a glycerol transporter belonging to the Major Facilitator Superfamily. ZRT1 was predicted to resemble the zinc transporter gene in Saccharomyces cerevisiae. Consistent with the prediction, protein plasma-membrane localizations were confirmed by ultracentrifugation and confocal microscopy. Their zinc binding abilities were identified by ITC in vitro, and the impaired zinc uptake activity caused by their deficiencies was confirmed by zinc fluorescence quantification in vivo. Furthermore, zinc excess could turn the two channels off, while zinc deficiency induced their expressions. Gt1 could only function to maintain zinc homeostasis in glycerol, while the block of Gt1 function might lead to Zrt1 upregulation in glucose. CONCLUSIONS: The zinc transport capabilities of Gt1 and Zrt1 were identified in vivo and in vitro. Their regulatory mode to maintain zinc homeostasis in K. phaffii is a new inspiration.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomycetales/metabolismo , Zinc/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Homeostasis , Proteínas de la Membrana/química , Dominios Proteicos
13.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858300

RESUMEN

Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.


Asunto(s)
Antibacterianos/farmacología , Antibiosis , Pseudoalteromonas/metabolismo , Especies Reactivas de Oxígeno/agonistas , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/patogenicidad , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides thetaiotaomicron/efectos de los fármacos , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/farmacología , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Lactonas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Operón , Oxidación-Reducción , Estructura Secundaria de Proteína , Pseudoalteromonas/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Quinona Reductasas/antagonistas & inhibidores , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/patogenicidad
14.
Metab Eng ; 55: 290-298, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31125607

RESUMEN

Hydroxyphenyl-pyranoanthocyanins are one of the pyranoanthocyanins found in red wines and some fruit juices. Since they have a fourth ring (pyran or ring D) which provides higher color intensity and exceptional stability toward pH variations in comparison to their anthocyanin precursors, these molecules are one of the most important candidates as natural colorants especially for low- and medium-acidic food and beverages. However, their isolation and characterization are difficult due to their very low concentration. In this study, we co-cultured recombinant E. coli strains to synthesize pyranoanthocyanins with improved titers and yields. To accomplish this task, firstly we engineered 4-vinylphenol and 4-vinylcatechol producer modules then we co-cultured each one of these strains with cyanidin-3-O-glucoside producer recombinant cells to obtain pyranocyanidin-3-O-glucoside-phenol (cyanidin-3-O-glucoside with vinylphenol adduct) and pyranocyanidin-3-O-glucoside-catechol (cyanidin-3-O-glucoside with vinylcatechol adduct). By optimizing the co-culture conditions, we were able to significantly increase final titers and yields, allowing our co-culture approach to easily outperform production of pyranoanthocyanins from red wine. Finally, we demonstrate that the produced pyranoanthocyanins are far more stable than the starting plant-produced cyanidin 3-O-glucoside.


Asunto(s)
Antocianinas , Escherichia coli , Glucósidos , Microorganismos Modificados Genéticamente , Antocianinas/biosíntesis , Antocianinas/genética , Técnicas de Cocultivo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Glucósidos/biosíntesis , Glucósidos/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrollo
15.
Metab Eng ; 52: 215-223, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529031

RESUMEN

Starvation of essential nutrients, such as nitrogen, sulfur, magnesium, and phosphorus, leads cells into stationary phase and potentially enhances target metabolite production because cells do not consume carbon for the biomass synthesis. The overall metabolic behavior changes depend on the type of nutrient starvation in Escherichia coli. In the present study, we determined the optimum nutrient starvation type for producing malonyl-CoA-derived metabolites such as 3-hydroxypropionic acid (3HP) and naringenin in E. coli. For 3HP production, high production titer (2.3 or 2.0 mM) and high specific production rate (0.14 or 0.28 mmol gCDW-1 h-1) was observed under sulfur or magnesium starvation, whereas almost no 3HP production was detected under nitrogen or phosphorus starvation. Metabolic profiling analysis revealed that the intracellular malonyl-CoA concentration was significantly increased under the 3HP producing conditions. This accumulation should contribute to the 3HP production because malonyl-CoA is a precursor of 3HP. Strong positive correlation (r = 0.95) between intracellular concentrations of ATP and malonyl-CoA indicates that the ATP level is important for malonyl-CoA synthesis due to the ATP requirement by acetyl-CoA carboxylase. For naringenin production, magnesium starvation led to the highest production titer (144 ±â€¯15 µM) and specific productivity (127 ±â€¯21 µmol gCDW-1). These results demonstrated that magnesium starvation is a useful approach to improve the metabolic state of strains engineered for the production of malonyl-CoA derivatives.


Asunto(s)
Escherichia coli/metabolismo , Magnesio/metabolismo , Malonil Coenzima A/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Escherichia coli/genética , Flavanonas/biosíntesis , Flavonoides/biosíntesis , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Ingeniería Metabólica/métodos , Nitrógeno/metabolismo , Fósforo/metabolismo
16.
Metab Eng ; 56: 39-49, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31449877

RESUMEN

γ-Polyglutamic acid (γ-PGA) is a biodegradable polymer naturally produced by Bacillus spp. that has wide applications. Fermentation of γ-PGA using Bacillus species often requires the supplementation of L-glutamic acid, which greatly increases the overall cost. Here, we report a metabolically engineered Corynebacterium glutamicum capable of producing γ-PGA from glucose. The genes encoding γ-PGA synthase complex from B. subtilis (pgsB, C, and A) or B. licheniformis (capB, C, and A) were expressed under inducible promoter Ptac in a L-glutamic acid producer C. glutamicum ATCC 13032, which led to low levels of γ-PGA production. Subsequently, C. glutamicum F343 with a strong L-glutamic acid production capability was tested. C. glutamicum F343 carrying capBCA produced γ-PGA up to 11.4 g/L, showing a higher titer compared with C. glutamicum F343 expressing pgsBCA. By introducing B. subtilis glutamate racemase gene racE under Ptac promoter mutants with different expression strength, the percentage of L-glutamic acid units in γ-PGA could be adjusted from 97.1% to 36.9%, and stayed constant during the fermentation process, while the γ-PGA titer reached 21.3 g/L under optimal initial glucose concentrations. The molecular weight (Mw) of γ-PGA in the engineered strains ranged from 2000 to 4000 kDa. This work provides a foundation for the development of sustainable and cost-effective de novo production of γ-PGA from glucose with customized ratios of L-glutamic acid in C. glutamicum.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Ácido Poliglutámico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
17.
Biotechnol Bioeng ; 116(12): 3149-3159, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31433061

RESUMEN

Bacteriolytic enzymes (cell lytic enzymes) are promising alternatives to antibiotics especially in killing drug-resistant bacteria. However, some bacteria slowly become resistant to various classes of peptidoglycan hydrolases, for reasons not well studied, in the presence of growth-supporting nutrients, which are prevalent at sites of infection. Here, we show that Staphylococcus aureus, a human and animal pathogen, while susceptible to the potent staphylolytic enzyme lysostaphin (Lst) in buffered saline, is highly resistant in the rich medium tryptic soy broth (TSB). Through a series of biochemical analysis, we identified that the resistance was due to prevention of Lst-cell binding mediated by the wall teichoic acids (WTAs) present on the cell surface. Inhibition or deletion of the gene tarO responsible for the first step of WTA biosynthesis greatly reduced S. aureus resistance to Lst in TSB. To overcome the resistance, we took advantage of the gene regulation potential of CRISPR-dCas9 and demonstrated that downregulation of tarO, tarH, and/or tarG gene expression, the latter two encoding enzymes that anchor WTAs in the outer layer of cell wall peptidoglycan, sensitized S. aureus to Lst and enabled eradication of the bacterium in TSB in 24 hr. As a result, we elucidate a key mechanism of Lst resistance in metabolically active S. aureus and provide a potential approach for treating life-threatening or hard-to-treat infections caused by Gram-positive pathogens.


Asunto(s)
Sistemas CRISPR-Cas , Farmacorresistencia Bacteriana , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Lisostafina/farmacología , Staphylococcus aureus , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
18.
Biotechnol Bioeng ; 116(6): 1392-1404, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30684358

RESUMEN

Metabolic engineering consistently demands to produce the maximum carbon and energy flux to target chemicals. To balance metabolic flux, gene expression levels of artificially synthesized pathways usually fine-tuned using multimodular optimization strategy. However, forward construction is an engineering conundrum because a vast number of possible pathway combinations need to be constructed and analyzed. Here, an iterative high-throughput balancing (IHTB) strategy was established to thoroughly fine-tune the (2S)-naringenin biosynthetic pathway. A series of gradient constitutive promoters from Escherichia coli were randomly cloned upstream of pathway genes, and the resulting library was screened using an ultraviolet spectrophotometry-fluorescence spectrophotometry high-throughput method, which was established based on the interactions between AlCl3 and (2S)-naringenin. The metabolic flux of the screened high-titer strains was analyzed and iterative rounds of screening were performed based on the analysis results. After several rounds, the metabolic flux of the (2S)-naringenin synthetic pathway was balanced, reaching a final titer of 191.9 mg/L with 29.2 mg/L p-coumaric acid accumulation. Chalcone synthase was speculated to be the rate-limiting enzyme because its expression level was closely related to the production of both (2S)-naringenin and p-coumaric acid. The established IHTB strategy can be used to efficiently balance multigene pathways, which will accelerate the development of efficient recombinant strains.


Asunto(s)
Vías Biosintéticas/genética , Flavanonas , Ensayos Analíticos de Alto Rendimiento/métodos , Ingeniería Metabólica/métodos , Aciltransferasas , Escherichia coli/genética , Flavanonas/análisis , Flavanonas/genética , Flavanonas/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas/genética
19.
Microb Cell Fact ; 18(1): 132, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405374

RESUMEN

BACKGROUND: Heparosan is the unsulfated precursor of heparin and heparan sulfate and its synthesis is typically the first step in the production of bioengineered heparin. In addition to its utility as the starting material for this important anticoagulant and anti-inflammatory drug, heparosan is a versatile compound that possesses suitable chemical and physical properties for making a variety of high-quality tissue engineering biomaterials, gels and scaffolds, as well as serving as a drug delivery vehicle. The selected production host was the Gram-positive bacterium Bacillus megaterium, which represents an increasingly used choice for high-yield production of intra- and extracellular biomolecules for scientific and industrial applications. RESULTS: We have engineered the metabolism of B. megaterium to produce heparosan, using a T7 RNA polymerase (T7 RNAP) expression system. This system, which allows tightly regulated and efficient induction of genes of interest, has been co-opted for control of Pasteurella multocida heparosan synthase (PmHS2). Specifically, we show that B. megaterium MS941 cells co-transformed with pT7-RNAP and pPT7_PmHS2 plasmids are capable of producing heparosan upon induction with xylose, providing an alternate, safe source of heparosan. Productivities of ~ 250 mg/L of heparosan in shake flasks and ~ 2.74 g/L in fed-batch cultivation were reached. The polydisperse Pasteurella heparosan synthase products from B. megaterium primarily consisted of a relatively high molecular weight (MW) heparosan (~ 200-300 kD) that may be appropriate for producing certain biomaterials; while the less abundant lower MW heparosan fractions (~ 10-40 kD) can be a suitable starting material for heparin synthesis. CONCLUSION: We have successfully engineered an asporogenic and non-pathogenic B. megaterium host strain to produce heparosan for various applications, through a combination of genetic manipulation and growth optimization strategies. The heparosan products from B. megaterium display a different range of MW products than traditional E. coli K5 products, diversifying its potential applications and facilitating increased product utility.


Asunto(s)
Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Disacáridos/biosíntesis , Glicosiltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , ARN Polimerasas Dirigidas por ADN/genética , Ingeniería Genética , Glicosiltransferasas/genética , Ingeniería Metabólica , Pasteurella multocida/enzimología , Proteínas Virales/genética
20.
Angew Chem Int Ed Engl ; 58(18): 5962-5966, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30870573

RESUMEN

Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de-N-acetylation, chemical N-sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non-radioactive NMR assay for glucuronosyl-C5-epimerase, and background-free quantification of in vivo half-life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope-enriched glycosaminoglycans.


Asunto(s)
Anticoagulantes/uso terapéutico , Heparina , Animales , Anticoagulantes/farmacología , Humanos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA