Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Acta Neuropathol ; 142(5): 827-839, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34355256

RESUMEN

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ependimoma/genética , Neoplasias Supratentoriales/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Niño , Femenino , Humanos , Masculino , Fusión de Oncogenes
3.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884457

RESUMEN

(1) Background: Astrocytic gliomas present overlapping appearances in conventional MRI. Supplementary techniques are necessary to improve preoperative diagnostics. Quantitative DWI via the computation of apparent diffusion coefficient (ADC) histograms has proven valuable for tumor characterization and prognosis in this regard. Thus, this study aimed to investigate (I) the potential of ADC histogram analysis (HA) for distinguishing low-grade gliomas (LGG) and high-grade gliomas (HGG) and (II) whether those parameters are associated with Ki-67 immunolabelling, the isocitrate-dehydrogenase-1 (IDH1) mutation profile and the methylguanine-DNA-methyl-transferase (MGMT) promoter methylation profile; (2) Methods: The ADC-histograms of 82 gliomas were computed. Statistical analysis was performed to elucidate associations between histogram features and WHO grade, Ki-67 immunolabelling, IDH1 and MGMT profile; (3) Results: Minimum, lower percentiles (10th and 25th), median, modus and entropy of the ADC histogram were significantly lower in HGG. Significant differences between IDH1-mutated and IDH1-wildtype gliomas were revealed for maximum, lower percentiles, modus, standard deviation (SD), entropy and skewness. No differences were found concerning the MGMT status. Significant correlations with Ki-67 immunolabelling were demonstrated for minimum, maximum, lower percentiles, median, modus, SD and skewness; (4) Conclusions: ADC HA facilitates non-invasive prediction of the WHO grade, tumor-proliferation rate and clinically significant mutations in case of astrocytic gliomas.

4.
Acta Neuropathol Commun ; 10(1): 5, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012690

RESUMEN

Pleomorphic xanthoastrocytoma (PXA) in its classic manifestation exhibits distinct morphological features and is assigned to CNS WHO grade 2 or grade 3. Distinction from glioblastoma variants and lower grade glial and glioneuronal tumors is a common diagnostic challenge. We compared a morphologically defined set of PXA (histPXA) with an independent set, defined by DNA methylation analysis (mcPXA). HistPXA encompassed 144 tumors all subjected to DNA methylation array analysis. Sixty-two histPXA matched to the methylation class mcPXA. These were combined with the cases that showed the mcPXA signature but had received a histopathological diagnosis other than PXA. This cohort constituted a set of 220 mcPXA. Molecular and clinical parameters were analyzed in these groups. Morphological parameters were analyzed in a subset of tumors with FFPE tissue available. HistPXA revealed considerable heterogeneity in regard to methylation classes, with methylation classes glioblastoma and ganglioglioma being the most frequent mismatches. Similarly, the mcPXA cohort contained tumors of diverse histological diagnoses, with glioblastoma constituting the most frequent mismatch. Subsequent analyses demonstrated the presence of canonical pTERT mutations to be associated with unfavorable prognosis among mcPXA. Based on these data, we consider the tumor type PXA to be histologically more varied than previously assumed. Histological approach to diagnosis will predominantly identify cases with the established archetypical morphology. DNA methylation analysis includes additional tumors in the tumor class PXA that share similar DNA methylation profile but lack the typical morphology of a PXA. DNA methylation analysis also assist in separating other tumor types with morphologic overlap to PXA. Our data suggest the presence of canonical pTERT mutations as a robust indicator for poor prognosis in methylation class PXA.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Telomerasa/genética , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Metilación de ADN , Humanos , Mutación , Pronóstico , Tasa de Supervivencia
5.
J Cancer Res Clin Oncol ; 145(4): 839-850, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30610375

RESUMEN

PURPOSE: Diffuse midline gliomas, H3 K27M-mutant were introduced as a new grade IV entity in WHO classification of tumors 2016. These tumors occur often in pediatric patients and show an adverse prognosis with a median survival less than a year. Most of the studies on these tumors, previously known as pediatric diffuse intrinsic pontine glioma, are on pediatric patients and its significance in adult patients is likely underestimated. METHODS: We studied 165 cases of brain tumors of midline localization initially diagnosed as diffuse astrocytomas, oligodendrogliomas, pilocytic astrocytomas, supependymomas, ependymomas and medulloblastomas in patients with an age range of 2-85. RESULTS: We identified 41 diffuse midline gliomas according WHO 2016, including 12 pediatric and 29 adult cases, among them two cases with histological features of low grade tumors: pilocytic astrocytoma and subependymoma. 49% (20/41) of the patients were above 30 years old by the first tumor manifestation including 29% (11/41) above 54 that signifies a broader age spectrum as previously reported. Our study confirms that H3 K27M mutations are associated with a poorer prognosis in pediatric patients compared to wild-type tumors, while in adult patients these mutations do not influence the survival significantly. The pattern of tumor growth was different in pediatric compared to adult patients; a diffuse growth along the brain axis was more evident in adult compared to pediatric patients (24% vs. 15%). CONCLUSION: H3 K27M mutations are frequent in adult midline gliomas and have a prognostic role similar to H3 K27M wild-type high-grade tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Mutación , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/patología , Niño , Preescolar , Metilación de ADN , Femenino , Glioma/patología , Histonas/genética , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Adulto Joven
6.
Oncotarget ; 9(26): 18148-18159, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719596

RESUMEN

BACKGROUND: Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. METHODS: 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. RESULTS: All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10-5 mm2 × s-1. CONCLUSIONS: ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

7.
Mol Imaging Biol ; 20(4): 632-640, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29392542

RESUMEN

PURPOSE: Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. PROCEDURES: Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. RESULTS: The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. CONCLUSIONS: ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.


Asunto(s)
Meningioma/diagnóstico , Meningioma/patología , Receptores de Progesterona/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular , Homólogo de la Proteína Chromobox 5 , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Meningioma/diagnóstico por imagen , Persona de Mediana Edad , Clasificación del Tumor , Curva ROC
8.
Transl Oncol ; 11(4): 957-961, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29909365

RESUMEN

BACKGROUND: Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. MATERIAL AND METHODS: Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. RESULTS: None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. CONCLUSIONS: Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA