Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 293(28): 11006-11021, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29784874

RESUMEN

Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inward rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorogen-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast.


Asunto(s)
Arrestina/metabolismo , Membrana Celular/metabolismo , Endocitosis/fisiología , Modelos Biológicos , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arrestina/genética , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
2.
Acta Radiol ; 60(4): 501-508, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29979104

RESUMEN

BACKGROUND: Non-traumatic avascular osteonecrosis of the femoral head (ONFH) is a severe disease causing destruction of the hip joint, often necessitating total hip arthroplasty (THA) even in young patients. Magnetic resonance imaging (MRI) is commonly used for diagnosis of ONFH, but provides limited insight into the subchondral bone microstructure. PURPOSE: To analyze routine MRI findings in comparison to high-resolution quantitative computed tomography (HR-QCT) with a special focus on the subchondral layer and to estimate the importance of differences determining the indication for THA. MATERIAL AND METHODS: Twelve patients with ONFH were included before THA. Preoperative MRI and HR-QCT of the retrieved femoral heads were aligned using a registration algorithm. Pathological findings and trabecular bone parameters in matched areas were analyzed by two readers. McNemar, marginal homogeneity test, and Pearson's correlation coefficient were used for comparison. RESULTS: Subchondral delamination was found in nine cases on HR-QCT, but missed or underestimated in all but one case on MRI ( P = 0.016). Chondral discontinuity was found in all cases on HR-QCT and in two cases on MRI ( P = 0.016). Areas of complete bone resorption on HR-QCT were linked to high signal intensity on 3D gradient-echo MRI sequences with water-selective excitation, while there was no correlation between trabecular bone parameters and MRI signal intensities in other areas ( P = 0.304). CONCLUSION: Subchondral delamination, subchondral resorption, and chondral discontinuity are found frequently in advanced stages of ONFH. These lesions tend to be underestimated on conventional MRI. Our results support the importance of CT imaging in the evaluation of ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
3.
Am J Physiol Renal Physiol ; 301(1): F1-11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21490136

RESUMEN

Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.


Asunto(s)
Enfermedades Renales/fisiopatología , Riñón/fisiología , Riñón/fisiopatología , Saccharomyces cerevisiae/fisiología , Animales , Acuaporinas/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Canales Iónicos/fisiología , Modelos Biológicos , Transducción de Señal/fisiología
4.
Mol Biol Cell ; 25(2): 276-89, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227888

RESUMEN

Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum-associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Canales de Potasio de Rectificación Interna/genética , Membrana Celular/genética , Endosomas/genética , Endosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Canales de Potasio de Rectificación Interna/metabolismo , Transporte de Proteínas , Propiedades de Superficie
5.
Mol Biol Cell ; 21(6): 1047-58, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20110346

RESUMEN

The epithelial sodium channel (ENaC) is composed of a single copy of an alpha-, beta-, and gamma-subunit and plays an essential role in water and salt balance. Because ENaC assembles inefficiently after its insertion into the ER, a substantial percentage of each subunit is targeted for ER-associated degradation (ERAD). To define how the ENaC subunits are selected for degradation, we developed novel yeast expression systems for each ENaC subunit. Data from this analysis suggested that ENaC subunits display folding defects in more than one compartment and that subunit turnover might require a unique group of factors. Consistent with this hypothesis, yeast lacking the lumenal Hsp40s, Jem1 and Scj1, exhibited defects in ENaC degradation, whereas BiP function was dispensable. We also discovered that Jem1 and Scj1 assist in ENaC ubiquitination, and overexpression of ERdj3 and ERdj4, two lumenal mammalian Hsp40s, increased the proteasome-mediated degradation of ENaC in vertebrate cells. Our data indicate that Hsp40s can act independently of Hsp70 to select substrates for ERAD.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canales Epiteliales de Sodio/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Canales Epiteliales de Sodio/genética , Ratones , Chaperonas Moleculares/genética , Oocitos/citología , Oocitos/fisiología , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA