Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-33593838

RESUMEN

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

2.
RNA ; 26(6): 715-723, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144191

RESUMEN

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Asunto(s)
Antibacterianos/química , Eritromicina/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Antibacterianos/farmacología , Microscopía por Crioelectrón , Eritromicina/química , Eritromicina/farmacología , Escherichia coli/genética , Modelos Moleculares , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Ribosómico 23S/química
3.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32601485

RESUMEN

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Asunto(s)
Amycolatopsis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana , Escherichia coli , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Naftacenos/química , Naftacenos/farmacología , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Conformación Proteica , Ribosomas/metabolismo
4.
Nucleic Acids Res ; 48(12): 6931-6942, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32427319

RESUMEN

First triplets of mRNA coding region affect the yield of translation. We have applied the flowseq method to analyze >30 000 variants of the codons 2-11 of the fluorescent protein reporter to identify factors affecting the protein synthesis. While the negative influence of mRNA secondary structure on translation has been confirmed, a positive role of rare codons at the beginning of a coding sequence for gene expression has not been observed. The identity of triplets proximal to the start codon contributes more to the protein yield then more distant ones. Additional in-frame start codons enhance translation, while Shine-Dalgarno-like motifs downstream the initiation codon are inhibitory. The metabolic cost of amino acids affects the yield of protein in the poor medium. The most efficient translation was observed for variants with features resembling those of native Escherichia coli genes.


Asunto(s)
Codón Iniciador/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Mensajero/genética , Codón Iniciador/ultraestructura , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/ultraestructura , Ribosomas/genética , Ribosomas/ultraestructura
5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293163

RESUMEN

Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.


Asunto(s)
Escherichia coli , Ribosomas , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones no Traducidas 5'/genética , Ribosomas/genética , Ribosomas/metabolismo , Biblioteca de Genes , Biosíntesis de Proteínas
6.
Nucleic Acids Res ; 46(15): 7873-7885, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29931259

RESUMEN

Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs.


Asunto(s)
Acetiltransferasas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , ARN de Transferencia de Isoleucina/genética , Acetilación , Acetiltransferasas/metabolismo , Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas/genética , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
7.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081386

RESUMEN

The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Adulto , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Fosfatos de Calcio/química , Diferenciación Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-30936109

RESUMEN

Although macrolides are known as excellent antibacterials, their medical use has been significantly limited due to the spread of bacterial drug resistance. Therefore, it is necessary to develop new potent macrolides to combat the emergence of drug-resistant pathogens. One of the key steps in rational drug design is the identification of chemical groups that mediate binding of the drug to its target and their subsequent derivatization to strengthen drug-target interactions. In the case of macrolides, a few groups are known to be important for drug binding to the ribosome, such as desosamine. Search for new chemical moieties that improve the interactions of a macrolide with the 70S ribosome might be of crucial importance for the invention of new macrolides. For this purpose, here we studied a classic macrolide, dirithromycin, which has an extended (2-methoxyethoxy)-methyl side chain attached to the C-9/C-11 atoms of the macrolactone ring that can account for strong binding of dirithromycin to the 70S ribosome. By solving the crystal structure of the 70S ribosome in complex with dirithromycin, we found that its side chain interacts with the wall of the nascent peptide exit tunnel in an idiosyncratic fashion: its side chain forms a lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4. To our knowledge, the ability of this side chain to form a contact in the macrolide binding pocket has not been reported previously and potentially can open new avenues for further exploration by medicinal chemists developing next-generation macrolide antibiotics active against resistant pathogens.


Asunto(s)
Eritromicina/análogos & derivados , Macrólidos/farmacología , Ribosomas/metabolismo , Amino Azúcares/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Eritromicina/farmacología , Péptidos/farmacología , Estructura Secundaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/metabolismo
9.
Nat Chem Biol ; 13(10): 1129-1136, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846667

RESUMEN

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome-KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.


Asunto(s)
Antibacterianos/farmacología , Klebsiella pneumoniae/química , Péptidos/farmacología , Ribosomas/química , Ribosomas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Sitios de Unión/efectos de los fármacos , Clonación Molecular , Klebsiella pneumoniae/metabolismo , Péptidos/química , Péptidos/metabolismo , Ingeniería de Proteínas
10.
Nucleic Acids Res ; 45(12): 7507-7514, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28505372

RESUMEN

The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Peptidil Transferasas/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Estreptograminas/farmacología , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , ARN Ribosómico 23S/antagonistas & inhibidores , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Estreptograminas/química , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/enzimología , Thermus thermophilus/genética
11.
Nucleic Acids Res ; 45(6): 3487-3502, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899632

RESUMEN

Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs.


Asunto(s)
Regiones no Traducidas 5' , Escherichia coli/genética , Biosíntesis de Proteínas , Secuencias Reguladoras de Ácido Ribonucleico , Separación Celular , Citometría de Flujo , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Conformación de Ácido Nucleico , Nucleótidos/fisiología
12.
J Am Chem Soc ; 140(16): 5625-5633, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29601195

RESUMEN

Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.


Asunto(s)
Antibacterianos/metabolismo , Klebsiella pneumoniae/enzimología , Péptidos/metabolismo , Antibacterianos/análisis , Biocatálisis , Vías Biosintéticas , Ciclización , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Péptidos/análisis , Proteolisis
13.
Antimicrob Agents Chemother ; 60(12): 7481-7489, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27736765

RESUMEN

In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Daño del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Genes Reporteros , Ingeniería Genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Regiones Promotoras Genéticas , Ribosomas/genética , Respuesta SOS en Genética , Proteína Fluorescente Roja
15.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543431

RESUMEN

In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.

16.
Materials (Basel) ; 15(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806777

RESUMEN

Drug delivery systems based on calcium phosphate (CaP) coatings have been recently recognized as beneficial drug delivery systems in complex cases of bone diseases for admission of drugs in the localized area, simultaneously inducing osteoinduction because of the bioavailable Ca and P ions. However, micro-arc oxidation (MAO) deposition of CaP does not allow for the formation of a coating with sufficient interconnected porosity for drug delivery purposes. Here, we report on the method to deposit CaP-based coatings using a new hybrid ultrasound-assisted MAO (UMAOH) method for deposition of coatings for drug delivery that could carry various types of drugs, such as cytostatic, antibacterial, or immunomodulatory compositions. Application of UMAOH resulted in coatings with an Ra roughness equal to 3.5 µm, a thickness of 50-55 µm, and a combination of high values of internal and surface porosity, 39 and 28%, respectively. The coating is represented by the monetite phase that is distributed in the matrix of amorphous CaP. Optimal conditions of coating deposition have been determined and used for drug delivery by impregnation with Vancomycin, 5-Fluorouracil, and Interferon-α-2b. Cytotoxicity and antimicrobial activity of the manufactured drug-carrying coatings have been studied using the three different cell lines and methicillin-resistant S. aureus.

17.
Materials (Basel) ; 14(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279263

RESUMEN

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous-crystalline structure that exhibits excellent biocopatibility. The structure and physico-chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and ß-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from -456 to -535 mV, while the zeta potential (ZP) decreased from -53 to -40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200-250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous-crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous-crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.

18.
Materials (Basel) ; 13(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947970

RESUMEN

Zn- and Cu-containing CaP­based coatings, obtained by micro-arc oxidation process, were deposited on substrates made of pure titanium (Ti) and novel Ti-40Nb alloy. The microstructure, phase, and elemental composition, as well as physicochemical and mechanical properties, were examined for unmodified CaP and Zn- or Cu-containing CaP coatings, in relation to the applied voltage that was varied in the range from 200 to 350 V. The unmodified CaP coatings on both types of substrates had mainly an amorphous microstructure with a minimal content of the CaHPO4 phase for all applied voltages. The CaP coatings modified with Zn or Cu had a range from amorphous to nano- and microcrystalline structure that contained micro-sized CaHPO4 and Ca(H2PO4)2·H2O phases, as well as nano­sized ß­Ca2P2O7, CaHPO4, TiO2, and Nb2O5 phases. The crystallinity of the formed coatings increased in the following order: CaP/TiNb < Zn-CaP/TiNb < Cu-CaP/TiNb < CaP/Ti < Zn-CaP/Ti < Cu-CaP/Ti. The increase in the applied voltage led to a linear increase in thickness, roughness, and porosity of all types of coatings, unlike adhesive strength that was inversely proportional to an increase in the applied voltage. The increase in the applied voltage did not affect the Zn or Cu concentration (~0.4 at%), but led to an increase in the Ca/P atomic ratio from 0.3 to 0.7.

19.
Microb Biotechnol ; 13(4): 1254-1261, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32202698

RESUMEN

Translation efficiency contributes several orders of magnitude difference in the overall yield of exogenous gene expression in bacteria. In diverse bacteria, the translation initiation site, whose sequence is the primary determinant of the translation performance, is comprised of the start codon and the Shine-Dalgarno box located upstream. Here, we have examined how the sequence of a spacer between these main components of the translation initiation site contributes to the yield of synthesized protein. We have created a library of reporter constructs with the randomized spacer region, performed fluorescently activated cell sorting and applied next-generation sequencing analysis (the FlowSeq protocol). As a result, we have identified sequence motifs for the spacer region between the Shine-Dalgarno box and AUG start codon that may modulate the translation efficiency in a 100-fold range.


Asunto(s)
Escherichia coli , Biosíntesis de Proteínas , Secuencia de Bases , Codón Iniciador , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Mensajero
20.
Materials (Basel) ; 13(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008055

RESUMEN

This work describes the wettability and biological performance of Zn- and Cu-containing CaP-based coatings prepared by micro-arc oxidation on pure titanium (Ti) and novel Ti-40Nb alloy. Good hydrophilic properties of all the coatings were demonstrated by the low contact angles with liquids, not exceeding 45°. An increase in the applied voltage led to an increase of the coating roughness and porosity, thereby reducing the contact angles to 6° with water and to 17° with glycerol. The free surface energy of 75 ± 3 mJ/m2 for all the coatings were determined. Polar component was calculated as the main component of surface energy, caused by the presence of strong polar PO43- and OH- bonds. In vitro studies showed that low Cu and Zn amounts (~0.4 at.%) in the coatings promoted high motility of human adipose-derived multipotent mesenchymal stromal cells (hAMMSC) on the implant/cell interface and subsequent cell ability to differentiate into osteoblasts. In vivo study demonstrated 100% ectopic bone formation only on the surface of the CaP coating on Ti. The Zn- and Cu-containing CaP coatings on both substrates and the CaP coating on the Ti-40Nb alloy slightly decreased the incidence of ectopic osteogenesis down to 67%. The MAO coatings showed antibacterial efficacy against Staphylococcus aureus and can be arranged as follows: Zn-CaP/Ti > Cu-CaP/TiNb, Zn-CaP/TiNb > Cu-CaP/Ti.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA