Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(26): 12980-12985, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186359

RESUMEN

Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary "stress failure" that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC ), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, ß-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.


Asunto(s)
Endotelio Vascular/patología , Canales Iónicos/metabolismo , Microvasos/patología , Edema Pulmonar/patología , Insuficiencia Respiratoria/patología , Uniones Adherentes/patología , Uniones Adherentes/ultraestructura , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/ultraestructura , Femenino , Técnicas de Sustitución del Gen , Humanos , Presión Hidrostática/efectos adversos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Pulmón/irrigación sanguínea , Masculino , Mecanotransducción Celular , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microvasos/citología , Microvasos/efectos de los fármacos , Cultivo Primario de Células , Edema Pulmonar/etiología , Edema Pulmonar/fisiopatología , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/prevención & control , Venenos de Araña/farmacología
2.
Am J Respir Cell Mol Biol ; 62(2): 168-177, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31409093

RESUMEN

Disruption of alveolar-capillary barriers is a major complication of high-volume mechanical ventilation referred to as "ventilator-induced lung injury." The stretching force in alveoli is transmitted to endothelial cells, increasing the tension on underlying endothelial plasma membrane. The mechanosensor Piezo1, a plasma membrane cation channel, was inducibly deleted in endothelial cells of mice (Piezo1iEC-/-), which allowed us to study its role in regulating the endothelial barrier response to alveolar stretch. We observed significant increase in lung vascular permeability in Piezo1iEC-/- mice as compared with control Piezo1fl/fl mice in response to high-volume mechanical ventilation. We also observed that human lung endothelial monolayers depleted of Piezo1 and exposed to cyclic stretch had increased permeability. We identified the calcium-dependent cysteine protease calpain as a downstream target of Piezo1. Furthermore, we showed that calpain maintained stability of the endothelial barrier in response to mechanical stretch by cleaving Src kinase, which was responsible for disassembling endothelial adherens junctions. Pharmacological activation of calpain caused Src cleavage and thereby its inactivation, and it restored the disrupted lung endothelial barrier seen in Piezo1iEC-/- mice undergoing high-volume mechanical ventilation. Our data demonstrate that downregulation of Piezo1 signaling in endothelium is a critical factor in the pathogenesis of ventilator-induced lung injury, and thus augmenting Piezo1 expression or pharmacologically activating Piezo1 signaling may be an effective therapeutic strategy.


Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Pulmón/metabolismo , Animales , Permeabilidad Capilar/efectos de los fármacos , Membrana Celular/metabolismo , Endotelio Vascular/metabolismo , Ratones , Alveolos Pulmonares/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo
3.
Mol Cell ; 48(6): 914-25, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23159740

RESUMEN

Vascular endothelial (VE)-cadherin homophilic adhesion controls endothelial barrier permeability through assembly of adherens junctions (AJs). We observed that loss of VE-cadherin-mediated adhesion induced the activation of Src and phospholipase C (PLC)γ2, which mediated Ca(2+) release from endoplasmic reticulum (ER) stores, resulting in activation of calcineurin (CaN), a Ca(2+)-dependent phosphatase. Downregulation of CaN activity induced phosphorylation of serine 162 in end binding (EB) protein 3. This phospho-switch was required to destabilize the EB3 dimer, suppress microtubule (MT) growth, and assemble AJs. The phospho-defective S162A EB3 mutant, in contrast, induced MT growth in confluent endothelial monolayers and disassembled AJs. Thus, VE-cadherin outside-in signaling regulates cytosolic Ca(2+) homeostasis and EB3 phosphorylation, which are required for assembly of AJs. These results identify a pivotal function of VE-cadherin homophilic interaction in modulating endothelial barrier through the tuning of MT dynamics.


Asunto(s)
Uniones Adherentes/metabolismo , Antígenos CD/fisiología , Cadherinas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Antígenos CD/metabolismo , Cadherinas/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Calmodulina/metabolismo , Adhesión Celular , Células Cultivadas , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Activación Enzimática , Homeostasis , Humanos , Cinética , Microscopía Confocal , Fosfolipasa C gamma/metabolismo , Fosforilación , Unión Proteica , Imagen de Lapso de Tiempo , Familia-src Quinasas/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L392-L401, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313617

RESUMEN

Here we describe a novel method for studying the protein "interactome" in primary human cells and apply this method to investigate the effect of posttranslational protein modifications (PTMs) on the protein's functions. We created a novel "biomimetic microsystem platform" (Bio-MSP) to isolate the protein complexes in primary cells by covalently attaching purified His-tagged proteins to a solid microscale support. Using this Bio-MSP, we have analyzed the interactomes of unphosphorylated and phosphomimetic end-binding protein-3 (EB3) in endothelial cells. Pathway analysis of these interactomes demonstrated the novel role of EB3 phosphorylation at serine 162 in regulating the protein's function. We showed that phosphorylation "switches" the EB3 biological network to modulate cellular processes such as cell-to-cell adhesion whereas dephosphorylation of this site promotes cell proliferation. This novel technique provides a useful tool to study the role of PTMs or single point mutations in activating distinct signal transduction networks and thereby the biological function of the protein in health and disease.


Asunto(s)
Biomimética , Células Endoteliales/metabolismo , Endotelio/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Biomimética/métodos , Biología Computacional/métodos , Humanos , Fosforilación , Proteínas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
5.
Circ Res ; 120(1): 179-206, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28057793

RESUMEN

The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.


Asunto(s)
Uniones Adherentes/metabolismo , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Transducción de Señal/fisiología , Animales , Uniones Comunicantes/metabolismo , Humanos , Unión Proteica/fisiología
6.
Cell Mol Life Sci ; 74(22): 4189-4207, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28803370

RESUMEN

The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Calcio/metabolismo , Citoesqueleto/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal
7.
Appl Opt ; 54(8): 2113-7, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25968391

RESUMEN

A femtosecond pulse train with THz repetition rate generated by the interference of two phase-modulated pulses has been recorded experimentally. Pulse repetition rates and their duration have been measured. It has been shown that at the 50-fs time delay between phase-modulated pulses the repetition rate is 3.1 THz with a pulse width of 200 fs, while at the 120-fs time delay the repetition rate is 7.1 THz with a pulse width of 67 fs.

8.
Circ Res ; 111(6): 739-49, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798526

RESUMEN

RATIONALE: Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mechanisms regulating p120 dissociation from VE-cadherin are not understood. OBJECTIVE: To address the mechanism of protein kinase C (PKC)-α function in increasing endothelial permeability, we determined the role of PKCα phosphorylation of p120 in mediating disruption of AJ integrity. METHODS AND RESULTS: We showed that PKCα phosphorylation of p120 at serine (S)879 in response to thrombin or lipopolysaccharide challenge reduced p120 binding affinity for VE-cadherin and mediated AJ disassembly secondary to VE-cadherin internalization. In studies in mouse lung vessels, expression of the phosphodeficient S879A-p120 mutant prevented the increase in vascular permeability induced by activation of the thrombin receptor PAR-1. CONCLUSIONS: PKCα phosphorylation of p120 at S879 is a critical phospho-switch mediating disassociation of p120 from VE-cadherin that results in AJ disassembly. Therefore, blocking PKCα-mediated p120 phosphorylation represents a novel targeted anti-inflammatory strategy to prevent disruption of vascular endothelial barrier function.


Asunto(s)
Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Uniones Adherentes/efectos de los fármacos , Animales , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Cateninas/genética , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Immunoblotting , Técnicas In Vitro , Lipopolisacáridos/farmacología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Microvasos/fisiología , Mutación , Fosforilación , Unión Proteica/efectos de los fármacos , Proteína Quinasa C-alfa/genética , Interferencia de ARN , Receptor PAR-1/metabolismo , Serina/genética , Serina/metabolismo , Trombina/farmacología , Catenina delta
10.
iScience ; 26(5): 106661, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168565

RESUMEN

Endothelial cells (ECs) continuously sense and adapt to changes in shear stress generated by blood flow. Here, we show that the activation of the mechanosensitive channel Piezo1 by defined shear forces induces Ca2+ entry into the endoplasmic reticulum (ER) via the ER Ca2+ ATPase pump. This entry is followed by inositol trisphosphate receptor 2 (IP3R2)-elicited ER Ca2+ release into the cytosol. The mechanism of ER Ca2+ release involves the generation of cAMP by soluble adenylyl cyclase (sAC), leading to IP3R2-evoked Ca2+ gating. Depleting sAC or IP3R2 prevents ER Ca2+ release and blocks EC alignment in the direction of flow. Overexpression of constitutively active Akt1 restores the shear-induced alignment of ECs lacking Piezo1 or IP3R2, as well as the flow-induced vasodilation in endothelial restricted Piezo1 knockout mice. These studies describe an unknown Piezo1-cAMP-IP3R2 circuit as an essential mechanism activating Akt signaling and inducing adaptive changes in ECs to laminar flow.

11.
Cell Rep Med ; 4(10): 101223, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37794584

RESUMEN

Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Ratones , Animales , Células Endoteliales/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/metabolismo
12.
Sci Signal ; 14(679)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879602

RESUMEN

Chloride intracellular channels 1 (CLIC1) and 4 (CLIC4) are expressed in endothelial cells and regulate angiogenic behaviors in vitro, and the expression of Clic4 is important for vascular development and function in mice. Here, we found that CLIC1 and CLIC4 in endothelial cells regulate critical G protein-coupled receptor (GPCR) pathways associated with vascular development and disease. In cultured endothelial cells, we found that CLIC1 and CLIC4 transiently translocated to the plasma membrane in response to sphingosine 1-phosphate (S1P). Both CLIC1 and CLIC4 were essential for mediating S1P-induced activation of the small guanosine triphosphatase (GTPase) Rac1 downstream of S1P receptor 1 (S1PR1). In contrast, only CLIC1 was essential for S1P-induced activation of the small GTPase RhoA downstream of S1PR2 and S1PR3. Neither were required for other S1P-S1PR signaling outputs. Rescue experiments revealed that CLIC1 and CLIC4 were not functionally interchangeable, suggesting distinct and specific functions for CLICs in transducing GPCR signaling. These CLIC-mediated mechanisms were critical for S1P-induced stimulation of the barrier function in endothelial cell monolayers. Our results define CLICs as previously unknown players in the pathways linking GPCRs to small GTPases and vascular endothelial function.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas Mitocondriales/metabolismo , Neuropéptidos , Receptores de Esfingosina-1-Fosfato , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rhoA , Animales , Línea Celular , Células Cultivadas , Células Endoteliales , Lisofosfolípidos , Ratones , Neuropéptidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
13.
PLoS One ; 15(5): e0232338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32421702

RESUMEN

End-binding proteins (EBs) associate with the growing microtubule plus ends to regulate microtubule dynamics as well as the interaction with intracellular structures. EB3 contributes to pathological vascular leakage through interacting with the inositol 1,4,5-trisphosphate receptor 3 (IP3R3), a calcium channel located at the endoplasmic reticulum membrane. The C-terminal domain of EB3 (residues 200-281) is functionally important for this interaction because it contains the effector binding sites, a prerequisite for EB3 activity and specificity. Structural data for this domain is limited. Here, we report the backbone chemical shift assignments for the human EB3 C-terminal domain and computationally explore its EB3 conformations. Backbone assignments, along with computational models, will allow future investigation of EB3 structural dynamics, interactions with effectors, and will facilitate the development of novel EB3 inhibitors.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Resonancia Magnética Nuclear Biomolecular , Humanos , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína
14.
J Cell Biol ; 159(4): 589-99, 2002 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-12446741

RESUMEN

The role of plus end-tracking proteins in regulating microtubule (MT) dynamics was investigated by expressing a dominant negative mutant that removed endogenous cytoplasmic linker proteins (CLIPs) from MT plus ends. In control CHO cells, MTs exhibited asymmetric behavior: MTs persistently grew toward the plasma membrane and displayed frequent fluctuations of length near the cell periphery. In the absence of CLIPs, the microtubule rescue frequency was reduced by sevenfold. MT behavior became symmetrical, consisting of persistent growth and persistent shortening. Removal of CLIPs also caused loss of p150Glued but not CLIP-associating protein (CLASP2) or EB1. This result raised the possibility that the change in dynamics was a result of the loss of either CLIPs or p150Glued. To distinguish between these possibilities, we performed rescue experiments. Normal MT dynamics were restored by expression of the CLIP-170 head domain, but p150Glued was not recruited back to MT plus ends. Expression of p150Glued head domain only partially restored MT dynamics. We conclude that the CLIP head domain is sufficient to alter MT dynamics either by itself serving as a rescue factor or indirectly by recruiting a rescue factor. By promoting a high rescue frequency, CLIPs provide a mechanism by which MT plus ends may be concentrated near the cell margin.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Células CHO , Células COS , Cricetinae , Complejo Dinactina , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
J Cell Biol ; 218(1): 299-316, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30463880

RESUMEN

Vascular endothelial (VE)-cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.


Asunto(s)
Uniones Adherentes/metabolismo , Cadherinas/genética , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Pericitos/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Uniones Adherentes/ultraestructura , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/citología , Aorta/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Cadherinas/deficiencia , Cadherinas/metabolismo , Células Endoteliales/ultraestructura , Femenino , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Pericitos/ultraestructura , Permeabilidad , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
16.
Sci STKE ; 2007(412): re8, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18000237

RESUMEN

G protein-coupled receptors (GPCRs) of endothelial cells transmit diverse intracellular signals that regulate adherens junction (AJ) permeability. Increased endothelial permeability contributes to pathological processes such as inflammation, atherogenesis, and acute lung injury. Thrombin, a serine protease, and sphingosine-1-phosphate (S1P), a bioactive lipid, regulate endothelial barrier function by activating their respective GPCRs-the protease-activated receptor PAR(1) and the S1P receptor S1P(1)-which initiate intracellular signals that regulate AJ integrity and cytoskeleton organization. The distinct patterns of PAR(1) and S1P(1) signal transduction underlie the functional antagonism between thrombin and S1P. Evidence points to a role for activation of the S1P(1) receptor that is induced by PAR(1)-mediated signaling in the mechanism of AJ reannealing and endothelial barrier repair. Understanding the molecular basis of AJ integrity in the context of inflammation is important in developing novel anti-inflammatory therapeutics. This Review provides a working model for molecular mechanisms for the dual regulation of endothelial barrier function.


Asunto(s)
Permeabilidad de la Membrana Celular , Endotelio Vascular/citología , Animales , Humanos , Fosforilación , Receptor PAR-1/metabolismo
17.
Cell Rep ; 12(1): 79-89, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26119739

RESUMEN

The mechanisms by which the microtubule cytoskeleton regulates the permeability of endothelial barrier are not well understood. Here, we demonstrate that microtubule-associated end-binding protein 3 (EB3), a core component of the microtubule plus-end protein complex, binds to inositol 1,4,5-trisphosphate receptors (IP3Rs) through an S/TxIP EB-binding motif. In endothelial cells, α-thrombin, a pro-inflammatory mediator that stimulates phospholipase Cß, increases the cytosolic Ca(2+) concentration and elicits clustering of IP3R3s. These responses, and the resulting Ca(2+)-dependent phosphorylation of myosin light chain, are prevented by depletion of either EB3 or mutation of the TxIP motif of IP3R3 responsible for mediating its binding to EB3. We also show that selective EB3 gene deletion in endothelial cells of mice abrogates α-thrombin-induced increase in endothelial permeability. We conclude that the EB3-mediated interaction of IP3Rs with microtubules controls the assembly of IP3Rs into effective Ca(2+) signaling clusters, which thereby regulate microtubule-dependent endothelial permeability.


Asunto(s)
Señalización del Calcio , Células Endoteliales/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Células CHO , Permeabilidad Capilar , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica
18.
J Cell Biol ; 208(1): 23-32, 2015 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559184

RESUMEN

The role of the RhoGTPase Rac1 in stabilizing mature endothelial adherens junctions (AJs) is not well understood. In this paper, using a photoactivatable probe to control Rac1 activity at AJs, we addressed the relationship between Rac1 and the dynamics of vascular endothelial cadherin (VE-cadherin). We demonstrated that Rac1 activation reduced the rate of VE-cadherin dissociation, leading to increased density of VE-cadherin at AJs. This response was coupled to a reduction in actomyosin-dependent tension across VE-cadherin adhesion sites. We observed that inhibiting myosin II directly or through photo-release of the caged Rho kinase inhibitor also reduced the rate of VE-cadherin dissociation. Thus, Rac1 functions by stabilizing VE-cadherin trans-dimers in mature AJs by counteracting the actomyosin tension. The results suggest a new model of VE-cadherin adhesive interaction mediated by Rac1-induced reduction of mechanical tension at AJs, resulting in the stabilization of VE-cadherin adhesions.


Asunto(s)
Uniones Adherentes/enzimología , Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/enzimología , Proteína de Unión al GTP rac1/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/efectos de los fármacos , Antígenos CD/genética , Cadherinas/genética , Adhesión Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Activación Enzimática , Humanos , Cinética , Microscopía Fluorescente , Microscopía por Video , Modelos Biológicos , Miosina Tipo II/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Estabilidad Proteica , Imagen de Lapso de Tiempo , Transfección , Proteína de Unión al GTP rac1/genética , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
19.
Stem Cell Reports ; 5(1): 10-21, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26120059

RESUMEN

Understanding epigenetic mechanisms regulating embryonic stem cell (ESC) differentiation to endothelial cells may lead to increased efficiency of generation of vessel wall endothelial cells needed for vascular engineering. Here we demonstrated that the histone demethylases KDM4A and KDM4C played an indispensable but independent role in mediating the expression of fetal liver kinase (Flk)1 and VE-cadherin, respectively, and thereby the transition of mouse ESCs (mESCs) to endothelial cells. KDM4A was shown to bind to histones associated with the Flk1 promoter and KDM4C to bind to histones associated with the VE-cadherin promoter. KDM4A and KDM4C were also both required for capillary tube formation and vasculogenesis in mice. We observed in zebrafish that KDM4A depletion induced more severe vasculogenesis defects than KDM4C depletion, reflecting the early involvement of KDM4A in specifying endothelial cell fate. These findings together demonstrate the essential role of KDM4A and KDM4C in orchestrating mESC differentiation to endothelial cells through the activation of Flk1 and VE-cadherin promoters, respectively.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Diferenciación Celular/genética , Histona Demetilasas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Antígenos CD/genética , Cadherinas/genética , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Regiones Promotoras Genéticas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
20.
J Clin Invest ; 125(2): 652-64, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25574837

RESUMEN

Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junction (AJ) integrity and determined that vascular endothelial protein tyrosine phosphatase (VE-PTP) is a HIF2α target. HIF2α-induced VE-PTP expression enhanced dephosphorylation of VE-cadherin, which reduced VE-cadherin endocytosis and thereby augmented AJ integrity and endothelial barrier function. Mice harboring an EC-specific deletion of Hif2a exhibited decreased VE-PTP expression and increased VE-cadherin phosphorylation, resulting in defective AJs. Mice lacking HIF2α in ECs had increased lung vascular permeability and water content, both of which were further exacerbated by endotoxin-mediated injury. Treatment of these mice with Fg4497, a prolyl hydroxylase domain 2 (PHD2) inhibitor, activated HIF2α-mediated transcription in a hypoxia-independent manner. HIF2α activation increased VE-PTP expression, decreased VE-cadherin phosphorylation, promoted AJ integrity, and prevented the loss of endothelial barrier function. These findings demonstrate that HIF2α enhances endothelial barrier integrity, in part through VE-PTP expression and the resultant VE-cadherin dephosphorylation-mediated assembly of AJs. Moreover, activation of HIF2α/VE-PTP signaling via PHD2 inhibition has the potential to prevent the formation of leaky vessels and edema in inflammatory diseases such as ARDS.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Uniones Adherentes/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Endoteliales/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/patología , Uniones Adherentes/genética , Uniones Adherentes/patología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Células Endoteliales/patología , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Ratones Noqueados , Fosforilación/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/biosíntesis , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA