Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(45): e202310727, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725396

RESUMEN

The prevalence of kinetically accessible states in supramolecular polymerization pathways has been exploited to control the growth of the polymer and thereby to obtain niche morphologies. Yet, these pathways themselves are not easily amenable for experimental delineation but could potentially be understood through molecular dynamics (MD) simulations. Herein, we report an extensive investigation of the self-assembly of pyrene-substituted diamide (PDA) monomers in solution, conducted using atomistic MD simulations and advanced sampling methods. We characterize such kinetic and thermodynamic states as well as the transition pathways and free energy barriers between them. PDA forms a dimeric segment with the N- to C-termini vectors of the diamide moieties arranged either in parallel or anti-parallel fashion. This characteristic, combined with the molecule's torsional flexibility and pyrene-solvent interactions, presents an ensemble of molecular configurations contributing to the kinetic state in the polymerization pathway. While this ensemble primarily comprises short oligomers containing a mix of anti-parallel and parallel dimeric segments, the thermodynamic state of the assembly is a right-handed polymer featuring parallel ones only. Our work thus offers an approach by which the landscape of any specific supramolecular polymerization can be deconstructed.

2.
J Am Chem Soc ; 142(16): 7606-7617, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32233467

RESUMEN

Multicomponent supramolecular copolymerization promises to construct complex nanostructures with emergent properties. However, even with two monomeric components, various possible outcomes such as self-sorted supramolecular homopolymers, a random (statistical) supramolecular copolymer, an alternate supramolecular copolymer, or a complex supramolecular block copolymer can occur, determined by their intermolecular interactions and monomer exchange dynamics and hence structural prediction is extremely challenging. Herein, we target this challenge and demonstrate unprecedented two-component sequence controlled supramolecular copolymerization by manipulating thermodynamic and kinetic routes in the pathway complexity of self-assembly of the constitutive monomers. Extensive molecular dynamics simulations provided useful mechanistic insights into the monomer exchange rates and free energy of interactions between the monomers that dictate the self-assembly pathway and sequence. The fluorescent nature of core-substituted naphthalene diimide monomers has been further utilized to characterize the three sequences via Structured Illumination Microscopy (SIM).

3.
Inorg Chem ; 59(17): 12884-12894, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32816462

RESUMEN

A pyridine/aniline appended unsymmetrical bidentate ligand N-(4-(4-aminobenzyl)phenyl)nicotinamide, investigated in this work has two well-separated coordination sites. Combination of the ligand with cis-protected palladium(II) (i.e., PdL') and palladium(II) in separate reactions produced the corresponding Pd2L'2Lun2 and extremely rare Pd2Lun4 type self-assembled binuclear complexes, respectively. Notably, both varieties of complexes are prepared from a common ligand system. Two diastereomers (i.e., (2,0) and (1,1)-forms) are possible for Pd2L'2Lun2 type complex, whereas four diastereomers (i.e., (4,0), (3,1), trans(2,2), and cis(2,2)-forms) can be imagined for the Pd2Lun4 type complex. However, exclusive diastereoselectivity was observed, and the complexes formed belong to (1,1)-Pd2L'2Lun2 and cis(2,2)-Pd2Lun4 forms. The diastereomers are predicted from NMR study in solution and DFT calculations in gas-phase and implicit-solvent media; however, single-crystal structures of both the complexes provided unambiguous support. The rare Pd2Lun4 type complex is studied in further detail. Parameters like counteranion, concentration, temperature, and stoichiometry of metal to ligand did not influence the diastereoselectivity in complex formation. DFT calculations show the cis(2,2) form to be the most stable, followed by the (3,1) isomer. The lowest conformational strain in the bound ligand strands in the cis(2,2)-arrangement along with optimal intermolecular interactions makes it the energetically most stable of all the isomers. Molecular dynamics (MD) simulations were carried out to visualize the self-assembly process toward the formation of Pd2Lun4 type complex and the free energy difference between the cis(2,2) and (3,1) isomers. Snapshots of MD simulation elucidate the step-by-step progress of complexation leading to the cis(2,2)-isomer.

4.
J Phys Chem Lett ; 15(2): 507-513, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38190655

RESUMEN

Understanding the mechanism of chirality transfer from a chiral surface to an achiral molecule is essential for designing molecular systems with tunable chiroptical properties. These aspects are explored herein using l- and d-isomers of alkyl valine amphiphiles, which self-assemble in water as nanofibers possessing a negative surface charge. An achiral chromophore, acridine orange, upon electrostatic binding on these surfaces displays mirror-imaged bisignated circular dichroism and red-emitting circularly polarized luminescence signals with a high dissymmetry factor. Experimental and computational investigations establish that the chiroptical properties emerge from surface-bound asymmetric H-type dimers of acridine orange, further supported by fluorescence lifetime imaging studies. Specifically, atomistic molecular dynamics simulations show that the experimentally observed chiral signatures have their origin in van der Waals interactions between acridine orange dimers and the amphiphile head groups as well as in the extent of solvent exposure of the chromophore.

5.
ACS Nano ; 17(11): 11054-11069, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220308

RESUMEN

The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA