Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Biochim Pol ; 56(1): 89-102, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19287803

RESUMEN

Two early nodulin 40 (enod40) genes, ENOD40-1, the shortest legume ENOD40 gene, and ENOD40-2, were isolated from Lupinus luteus, a legume with indeterminate nodules. Both genes were expressed at similar levels during symbiosis with nitrogen-fixing bacteria. ENOD40 phylogeny clustered the L. luteus genes with legumes forming determinate nodules and revealed peptide similarities. The ENOD40-1 small ORF A fused to a reporter gene was efficiently expressed in plant cells, indicating that the start codon is recognized for translation. The ENOD40-1 RNA structure predicted based on Pb(II)-induced cleavage and modeling revealed four structurally conserved domains, an absence of domain 4 characteristic for legumes of indeterminate nodules, and interactions between the conserved region I and a region located upstream of domain 6. Domain 2 contains Mg(II) ion binding sites essential for organizing RNA secondary structure. The differences between L. luteus and Glycine max ENOD40 RNA models suggest the possibility of a switch between two structural states of ENOD40 transcript.


Asunto(s)
Lupinus/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Biosíntesis de Proteínas , ARN de Planta/química , Southern Blotting , Genes Reporteros , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Mol Plant Microbe Interact ; 20(9): 1138-48, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17849716

RESUMEN

Deciphering the mechanisms leading to symbiotic nitrogen-fixing root nodule organogenesis in legumes resulted in the identification of numerous nodule-specific genes and gene families. Among them, NCR and GRP genes encode short secreted peptides with potential antimicrobial activity. These genes appear to form large multigenic families in Medicago truncatula and other closely related legume species, whereas no similar genes were found in databases of Lotus japonicus and Glycine max. We analyzed the genomic organization of these genes as well as their evolutionary dynamics in the M. truncatula genome. A total of 108 NCR and 23 GRP genes have been mapped that were often clustered in the genome. These included 29 new NCR and 17 new GRP genes. Reverse transcription-polymerase chain reaction analyses of the novel genes confirmed their exclusive nodule-specific expression similar to the previously identified members. Protein alignments and phylogenetic analyses revealed traces of several duplication events in the history of GRP and NCR genes. Moreover, microsyntenic evidences between M. truncatula and L. japonicus validated the hypothesis that these genes are specific for the inverted repeat-lacking clade of hologalegoid legumes, which allowed dating the appearance of these two gene families during the evolution of legume plants.


Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Medicago truncatula/genética , Familia de Multigenes/genética , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Secuencia de Aminoácidos , Cromosomas de las Plantas/genética , Genómica , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Nódulos de las Raíces de las Plantas/metabolismo , Sintenía
3.
Methods Mol Biol ; 343: 115-27, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16988338

RESUMEN

Legumes have long been recalcitrant to efficient Agrobacterium tumefaciens-mediated transformation. The choice and use of model legume plants (Medicago truncatula and Lotus japonicus) for molecular studies has triggered extensive studies devoted to the development of efficient Agrobacterium-mediated transformation protocols for these two plants. In M. truncatula, transformation protocols rely on the use of highly regenerable lines obtained by recurrent in vitro culture selection. These protocols are based on Agrobacterium-mediated transformation of M. truncatula followed by somatic embryogenesis-mediated plant regeneration. We describe here the protocol developed for M. truncatula R108-1 (c3).


Asunto(s)
Agrobacterium tumefaciens/genética , Técnicas de Transferencia de Gen , Medicago truncatula/genética , Hojas de la Planta/genética , Transformación Genética , Desarrollo Embrionario/genética , Medicago truncatula/embriología , Medicago truncatula/microbiología , Hojas de la Planta/embriología , Hojas de la Planta/microbiología , Regeneración/genética
4.
Mol Plant Microbe Interact ; 18(12): 1340-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16478054

RESUMEN

NolR is a regulator of nodulation genes present in species belonging to the genera Rhizobium and Sinorhizobium. The expression of the nolR gene in Sinorhizobium meliloti AK631 was investigated in relation to stage of growth, availability of nutrients, and different environmental stimuli using the nolR::lacZ fusion report system. It has been shown that the nolR gene is regulated in a population-density-dependent fashion and influenced by a number of environmental stimuli, including nutrients, pH, and oxygen. Exploration of the physiological functions of NolR under various laboratory conditions has shown that NolR is required for the optimal growth of the bacteria on solid media, optimal survival of the bacteria in carbon-starved minimal medium, and after heat shock challenge. NolR also is involved in recipient-induced conjugative transfer of a plasmid. Proteome analysis of strain AK631 and its Tn5-induced nolR-deficient mutant EK698 revealed that a functional NolR induced significant differences in the accumulation of 20 polypeptides in peptide mass fingerprinting early-log-phase cultures and 48 polypeptides in stationary-phase cultures. NolR acted mainly as a repressor in the early-log-phase cultures, whereas it acted as both repressor and activator in the stationary-phase cultures. The NolR protein and 59 NolR-associated proteins have been identified by peptide mass fingerprinting. The NolR protein was differentially expressed only in the NolR+ wild-type strain AK631 but not in its NolR- derivative EK698, confirming that no functional NolR was produced in the mutant. The NolR-associated proteins have diverse functions in amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, energy metabolism, metabolism of Co-factors, and cellular adaptation and transportation. These results further support our previous proposal that the NolR is a global regulatory protein which is required for the optimization of nodulation, bacterial growth and survival, and conjugative transfer of a plasmid.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sinorhizobium meliloti/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Luteolina/farmacología , Oxígeno , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Sinorhizobium meliloti/metabolismo
5.
Mol Plant Microbe Interact ; 15(9): 922-31, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12236598

RESUMEN

Four genes encoding small proteins with significantly high glycine content have been identified from root nodules of Medicago sativa. All of these proteins as well as their Medicago truncatula homologues carried an amino terminal signal peptide and a glycine-rich carboxy terminal domain. All except nodGRP3 lacked the characteristic repeat structure described for cell wall and stress response-related glycine-rich proteins (GRP). Expression of these GRP genes was undetectable in flower, leaf, stem, and hypocotyl cells, whereas expression was highly induced during root nodule development, suggesting that GRP genes act as nodulins. Moreover, none of these nodule-expressed GRP genes were activated by hormones or stress treatments, which are inducers of many other GRPs. In Rhizobium-free spontaneous nodules and in nodules induced by a noninfective mutant strain of Sinorhizobium meliloti, all these genes were repressed, while they were induced in Fix- nodules, unaffected in bacterial infection, but halted in bacteroid differentiation. These results demonstrated that bacterial infection but not bacteroid differentiation is required for the induction of the nodule-specific GRP genes. Differences in kinetics and localization of gene activation as well as in the primary structure of proteins suggest nonredundant roles for these GRPs in nodule organogenesis.


Asunto(s)
Glicina/metabolismo , Medicago/microbiología , Proteínas de Plantas/genética , Rhizobium/crecimiento & desarrollo , Simbiosis/genética , Secuencia de Aminoácidos , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Medicago/crecimiento & desarrollo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Simbiosis/fisiología , Activación Transcripcional
6.
Mol Plant Microbe Interact ; 15(10): 1008-13, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12437298

RESUMEN

Plants associate with a wide range of mutualistic and parasitic biotrophic organisms. Here, we investigated whether beneficial plant symbionts and biotrophic pathogens induce distinct or overlapping regulatory pathways in Medicago truncatula. The symbiosis between Sinorhizobium meliloti and this plant results in the formation of nitrogen-fixing root nodules requiring the activation of specific genes in the host plant. We studied expression patterns of nodule-expressed genes after infection with the root-knot nematode Meloidogyne incognita. Two regulators induced during nodule organogenesis, the early nodulin gene ENOD40 involved in primordium formation and the cell cycle gene CCS52a required for cell differentiation and endoreduplication, are expressed in galls of the host plant. Expression analysis of promoter-uidA fusions indicates an accumulation of CCS52a transcripts in giant cells undergoing endoreduplication, while ENOD40 expression is localized in surrounding cell layers. Transgenic plants overexpressing ENOD40 show a significantly higher number of galls. In addition, out of the 192 nodule-expressed genes tested, 38 genes were upregulated in nodules at least threefold compared with control roots, but only two genes, nodulin 26 and cyclin D3, were found to be induced in galls. Taken together, these results suggest that certain events, such as endoreduplication, cell-to-cell communication with vascular tissues, or water transport, might be common between giant cell formation and nodule development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Medicago/genética , Nematodos/crecimiento & desarrollo , Proteínas de Plantas/genética , ARN no Traducido/fisiología , Simbiosis/genética , Animales , Ciclina D3 , Ciclinas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Medicago/microbiología , Medicago/parasitología , Proteínas de la Membrana/genética , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Tumores de Planta/genética , Plantas Modificadas Genéticamente , ARN Largo no Codificante , Sinorhizobium meliloti/crecimiento & desarrollo
7.
FEBS Lett ; 567(1): 152-7, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15165909

RESUMEN

Postembryonic development of plant organs requires a constant interplay between the cell cycle and the developmental programs. Upon endo- and exogenous signals, plant cells can enter, exit or modify the cell cycle. Alteration of mitotic cycles to endoreduplication cycles, where the genome is duplicated without mitosis, is common in plants and may play a role in cell differentiation. The switch from the mitotic to endocycles is regulated by Ccs52A, a plant orthologue of the yeast and animal Cdhl proteins, acting as substrate-specific activator of the anaphase-promoting complex E3 ubiquitin ligase. Here, several aspects of endoreduplication are discussed with special attention on nitrogen-fixing nodule development where endoreduplication is an integral part of symbiotic cell differentiation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Plantas/fisiología , Complejos de Ubiquitina-Proteína Ligasa , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Diferenciación Celular , División Celular , ADN/química , Fase G1 , Genes de Plantas , Mitosis , Nitrógeno/química , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/genética , Poliploidía , Especificidad por Sustrato , Simbiosis , Ubiquitina-Proteína Ligasas/metabolismo
8.
Physiol Plant ; 120(1): 132-139, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15032885

RESUMEN

Phytohormones are well-known regulators of the symbiotic Rhizobium-legume association in the plant host. The enod40 nodulin gene is associated with the earliest phases of the nodule organogenesis programme in the legume host and modifying its expression resulted in perturbations of nodule development in Medicago truncatula. Therefore in our pursuit to mimic the initial signal transduction steps of legume nodulation in the alien physiological set-up of a rice plant, we have expressed the Mtenod40 gene in rice. Molecular data confirm the stable integration, inheritance and transcription of the foreign gene in this non-legume. We have compared the phytohormonal responses of Mtenod40-overexpressing and control plants in a homologous legume background (M. truncatula) and in the non-legume rice. An enod40-mediated root growth response, induced by inhibition of ethylene biosynthesis, was observed in both plants. On the other hand, a significant differential effect of cytokinins was observed only in rice plants. This suggests that ethylene inhibits enod40 action both in legumes and non-legumes and reinforces that some of the early signal transduction steps of the nodule developmental programme may function in rice.

9.
J Exp Bot ; 58(11): 2799-810, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17615411

RESUMEN

Glycoside hydrolases are often members of a multigene family, suggesting individual roles for each isoenzyme. Various extracellular glycoside hydrolases have an important but poorly understood function in remodelling the cell wall during plant growth. Here, MsXyl1, a concanavalin A-binding protein from alfalfa (Medicago sativa L.) belonging to the glycoside hydrolase family 3 (beta-D-xylosidase branch) is characterized. Transcripts of MsXyl1 were detected in roots (particularly root tips), root nodules, and flowers. MsXyl1 under the control of the CaMV 35S promoter was expressed in the model legume Medicago truncatula (Gaertner). Concanavalin A-binding proteins from the transgenic plants exhibited 5-8-fold increased activities towards three p-nitrophenyl (PNP) glycosides, namely PNP-beta-D-xyloside, PNP-alpha-L-arabinofuranoside, and PNP-alpha-L-arabinopyranoside. An antiserum raised against a synthetic peptide recognized MsXyl1, which was processed to a 65 kDa form. To characterize the substrate specificity of MsXyl1, the recombinant protein was purified from transgenic M. truncatula leaves by concanavalin A and anion chromatography. MsXyl1cleaved beta-1,4-linked D-xylo-oligosaccharides and alpha-1,5-linked L-arabino-oligosaccharides. Arabinoxylan (from wheat) and arabinan (from sugar beet) were substrates for MsXyl1, whereas xylan (from oat spelts) was resistant to degradation. Furthermore, MsXyl1 released xylose and arabinose from cell wall polysaccharides isolated from alfalfa roots. These data suggest that MsXyl1 is a multifunctional beta-xylosidase/alpha-L-arabinofuranosidase/alpha-L-arabinopyranosidase implicated in cell wall turnover of arabinose and xylose, particularly in rapidly growing root tips. Moreover, the findings of this study demonstrate that stable transgenic M. truncatula plants serve as an excellent expression system for purification and characterization of proteins.


Asunto(s)
Glicósido Hidrolasas/genética , Medicago sativa/enzimología , Medicago truncatula/genética , Proteínas de Plantas/genética , Xilosidasas/genética , Secuencia de Aminoácidos , Clonación Molecular , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Medicago sativa/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Xilosidasas/química , Xilosidasas/metabolismo
10.
Plant Cell ; 19(12): 3974-89, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18156218

RESUMEN

NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalonate biosynthetic pathway leading to the production of a diverse array of isoprenoid compounds. Testing other HMGR members revealed a specific interaction between NORK and HMGR1. Mutagenesis and deletion analysis showed that this interaction requires the cytosolic active kinase domain of NORK and the cytosolic catalytic domain of HMGR1. NORK homologs from Lotus japonicus and Sesbania rostrata also interacted with Mt HMGR1, but homologous nonsymbiotic kinases of M. truncatula did not. Pharmacological inhibition of HMGR activities decreased nodule number and delayed nodulation, supporting the importance of the mevalonate pathway in symbiotic development. Decreasing HMGR1 expression in M. truncatula transgenic roots by RNA interference led to a dramatic decrease in nodulation, confirming that HMGR1 is essential for nodule development. Recruitment of HMGR1 by NORK could be required for production of specific isoprenoid compounds, such as cytokinins, phytosteroids, or isoprenoid moieties involved in modification of signaling proteins.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidroximetilglutaril-CoA Reductasas/genética , Inmunoprecipitación , Hibridación in Situ , Lovastatina/farmacología , Medicago truncatula/genética , Medicago truncatula/microbiología , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis , Técnicas del Sistema de Dos Híbridos
11.
Plant Physiol ; 142(3): 972-83, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16963524

RESUMEN

Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula.


Asunto(s)
Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación
12.
Proc Natl Acad Sci U S A ; 103(13): 5230-5, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16547129

RESUMEN

Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome replication without mitosis and cytokinesis) and grow consequently to extreme sizes. Here we demonstrate that differentiation of bacteroids in indeterminate nodules of Medicago and related legumes from the galegoid clade shows remarkable similarity to host cell differentiation. During bacteroid maturation, repeated DNA replication without cytokinesis results in extensive amplification of the entire bacterial genome and elongation of bacteria. This finding reveals a positive correlation in prokaryotes between DNA content and cell size, similar to that in eukaryotes. These polyploid bacteroids are metabolically functional but display increased membrane permeability and are nonviable, because they lose their ability to resume growth. In contrast, bacteroids in determinate nodules of the nongalegoid legumes lotus and bean are comparable to free-living bacteria in their genomic DNA content, cell size, and viability. Using recombinant Rhizobium strains nodulating both legume types, we show that bacteroid differentiation is controlled by the host plant. Plant factors present in nodules of galegoid legumes but absent from nodules of nongalegoid legumes block bacterial cell division and trigger endoreduplication cycles, thereby forcing the endosymbionts toward a terminally differentiated state. Hence, Medicago and related legumes have evolved a mechanism to dominate the symbiosis.


Asunto(s)
Ciclo Celular , Células Eucariotas/fisiología , Fabaceae/fisiología , Rhizobium/citología , Aumento de la Célula , ADN Bacteriano/genética , Fabaceae/clasificación , Genoma Bacteriano/genética , Rhizobium/fisiología , Simbiosis
13.
Cell Cycle ; 4(8): 1084-92, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15970679

RESUMEN

The anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, is an essential regulator of the cell cycle from metaphase until S phase in yeast and metazoans. APC mediates degradation of numerous cell cycle-related proteins, including mitotic cyclins and its activation and substrate-specificity are determined by two adaptor proteins, Cdc20 and Cdh1. Plants have multiple APC activators and the Cdh1-type proteins, in addition, are represented by two subclasses, known as Ccs52A and Ccs52B. The Arabidopsis genome contains five cdc20 genes as well as ccs52A1, ccs52A2 and ccs52B. In Schizosaccharomyces pombe, expression of the three Atccs52 genes elicited distinct phenotypes supporting nonredundant function of the AtCcs52 proteins. Consistent with these activities, the AtCcs52 proteins were able to bind both to the yeast and the Arabidopsis APCs. In synchronized Arabidopsis cell cultures the cdc20 transcripts were present from early G2 until the M-phase exit, ccs52B from G2/M to M while ccs52A1 and ccs52A2 were from late M until early G2, suggesting consecutive action of these APC activators in the plant cell cycle. The AtCcs52 proteins interacted with different subsets of mitotic cyclins, in accordance with their expression profiles, either in free- or CDK-bound forms. Expression of most APC subunits was constitutive, whereas cdc27a and cdc27b, corresponding to two forms of apc3, and ubc19 and ubc20 encoding E2-C type ubiquitin-conjugating enzymes displayed differences in their cell cycle regulation. These data indicate the existence of numerous APC(Cdc20/Ccs52/Cdc27) forms in Arabidopsis, which in conjunction with different E2 enzymes might have distinct or complementary functions at distinct stages of the cell cycle.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , ADN Polimerasa III , Proteínas Fúngicas/química , Fase G2 , Genes de Plantas , Genoma de Planta , Metafase , Mitosis , Proteínas de Plantas/metabolismo , Fase S , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe , Especificidad por Sustrato
14.
Plant Cell ; 16(4): 1047-59, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15037734

RESUMEN

In eukaryotes, diverse mRNAs containing only short open reading frames (sORF-mRNAs) are induced at specific stages of development. Their mechanisms of action may involve the RNA itself and/or sORF-encoded oligopeptides. Enod40 genes code for highly structured plant sORF-mRNAs involved in root nodule organogenesis. A novel RNA binding protein interacting with the enod40 RNA, MtRBP1 (for Medicago truncatula RNA Binding Protein 1), was identified using a yeast three-hybrid screening. Immunolocalization studies and use of a MtRBP1-DsRed2 fluorescent protein fusion showed that MtRBP1 localized to nuclear speckles in plant cells but was exported into the cytoplasm during nodule development in enod40-expressing cells. Direct involvement of the enod40 RNA in MtRBP1 relocalization into cytoplasmic granules was shown using a transient expression assay. Using a (green fluorescent protein)/MS2 bacteriophage system to tag the enod40 RNA, we detected in vivo colocalization of the enod40 RNA and MtRBP1 in these granules. This in vivo approach to monitor RNA-protein interactions allowed us to demonstrate that cytoplasmic relocalization of nuclear proteins is an RNA-mediated cellular function of a sORF-mRNA.


Asunto(s)
Medicago/genética , Medicago/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , ARN no Traducido/genética , Secuencia de Aminoácidos , Secuencia de Bases , Citoplasma/metabolismo , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cebollas/genética , Cebollas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Largo no Codificante , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
15.
Plant J ; 34(1): 95-106, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12662312

RESUMEN

The tobacco element, Tnt1, is one of the few active retrotransposons in plants. Its transposition is activated during protoplast culture in tobacco and tissue culture in the heterologous host Arabidopsis thaliana. Here, we report its transposition in the R108 line of Medicago truncatula during the early steps of the in vitro transformation-regeneration process. Two hundred and twenty-five primary transformants containing Tnt1 were obtained. Among them, 11.2% contained only transposed copies of the element, indicating that Tnt1 transposed very early and efficiently during the in vitro transformation process, possibly even before the T-DNA integration. The average number of insertions per transgenic line was estimated to be about 15. These insertions were stable in the progeny and could be separated by segregation. Inspection of the sequences flanking the insertion sites revealed that Tnt1 had no insertion site specificity and often inserted in genes (one out of three insertions). Thus, our work demonstrates the functioning of an efficient transposable element in leguminous plants. These results indicate that Tnt1 can be used as a powerful tool for insertion mutagenesis in M. truncatula.


Asunto(s)
Medicago/genética , Nicotiana/genética , Retroelementos/genética , Técnicas de Cultivo , Expresión Génica , Genes de Plantas/genética , Medicago/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutagénesis Insercional , Plantas Modificadas Genéticamente , Regeneración , Transformación Genética
16.
Plant Cell ; 16(2): 422-34, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14742878

RESUMEN

The Cdc20 and Cdh1/Fzr proteins are the substrate-specific activators of the anaphase-promoting complex (APC). In Medicago truncatula, the MtCcs52A and MtCcs52B proteins represent two subgroups of the Cdh1-type activators, which display differences in their cell cycle regulation, structure, and function. The ccs52A transcripts are present in all phases of the cell cycle. By contrast, expression of ccs52B is restricted to late G2-phase and M-phase, and its induced overexpression in BY2 cells inhibited mitosis. MtCcs52A is active in Schizosaccharomyces pombe and binds to the S. pombe APC, whereas MtCcs52B does not because of differences in the N-terminal region. We identified a new functional domain, the Cdh1-specific motif conserved in the Cdh1 proteins that, in addition to the C-box and the terminal Ile and Arg residues, was essential for the activity and required for efficient binding to the APC. Moreover, we demonstrate that cyclin-dependent kinase phosphorylation sites adjacent to the C-box may regulate the interaction with the APC. In the different plant organs, the expression of Mtccs52A and Mtccs52B displayed differences and indicated the involvement of the APC in differentiation processes.


Asunto(s)
Medicago/genética , Proteínas de Plantas/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/genética , División Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago/fisiología , Datos de Secuencia Molecular , Fosforilación , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
17.
Plant Physiol ; 132(1): 161-73, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12746522

RESUMEN

Transcriptome analysis of Medicago truncatula nodules has led to the discovery of a gene family named NCR (nodule-specific cysteine rich) with more than 300 members. The encoded polypeptides were short (60-90 amino acids), carried a conserved signal peptide, and, except for a conserved cysteine motif, displayed otherwise extensive sequence divergence. Family members were found in pea (Pisum sativum), broad bean (Vicia faba), white clover (Trifolium repens), and Galega orientalis but not in other plants, including other legumes, suggesting that the family might be specific for galegoid legumes forming indeterminate nodules. Gene expression of all family members was restricted to nodules except for two, also expressed in mycorrhizal roots. NCR genes exhibited distinct temporal and spatial expression patterns in nodules and, thus, were coupled to different stages of development. The signal peptide targeted the polypeptides in the secretory pathway, as shown by green fluorescent protein fusions expressed in onion (Allium cepa) epidermal cells. Coregulation of certain NCR genes with genes coding for a potentially secreted calmodulin-like protein and for a signal peptide peptidase suggests a concerted action in nodule development. Potential functions of the NCR polypeptides in cell-to-cell signaling and creation of a defense system are discussed.


Asunto(s)
Cisteína/genética , Medicago/genética , Péptidos/genética , Raíces de Plantas/genética , Simbiosis/genética , Secuencia de Aminoácidos , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Medicago/crecimiento & desarrollo , Medicago/microbiología , Datos de Secuencia Molecular , Familia de Multigenes/genética , Péptidos/metabolismo , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Señales de Clasificación de Proteína/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Sinorhizobium meliloti/crecimiento & desarrollo
18.
Plant Mol Biol ; 51(4): 555-66, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12650621

RESUMEN

Interaction between Medicago spp. and Sinorhizobium meliloti leads to the development of a novel organ, the root nodule. A gene, Msapk1, encoding a novel type of plant protein kinase containing a N-terminal region with an ankyrin domain, was identified and shown to be expressed both in S. meliloti-infected and spontaneous nodules in alfalfa. This gene is not exclusively associated to nodulation since its expression was detected in other plant organs. Several genes coding for ankyrin protein kinases (APKs) were detected in various plants and animals. Three closest A. thaliana homologues of Msapk1 were identified in databases and two of them were shown to express differentially in various organs using gene-specific RT-PCR. In contrast, Southern analysis suggests that a single-copy gene exists in diploid M. truncatula. By screening a M. truncatula BAC library the Mtapk1 genomic region was isolated and sequenced. Two neighbouring genes showing homologies to previously identified sequences in data banks were detected in the vicinity of the Mtapk1 gene and compared to similar regions of the three Atapk genes. The distribution of exons/introns was the same for all expressed genes of both species although Mtapk1 contained larger introns. Upon osmotic stress Msapk1 expression was induced in roots of alfalfa starting from three hours up to two days of treatment. These data suggest that Msapk1, involved in alfalfa osmotic stress responses, belongs to a novel class of plant protein kinases.


Asunto(s)
Ancirinas/genética , Medicago/genética , Proteínas Quinasas/genética , Secuencia de Aminoácidos , ADN Complementario/química , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Medicago/enzimología , Medicago sativa/enzimología , Medicago sativa/genética , Datos de Secuencia Molecular , Presión Osmótica , Filogenia , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
19.
Eur J Biochem ; 270(2): 261-9, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12605677

RESUMEN

Tip growth is a specialized type of polar growth where new cell wall is deposited in a localized region of the cell, the growing tip. These cells show a characteristic zonation, with a high accumulation of secretory vesicles containing cell wall components at the tip, followed by an organelle-enriched zone. MsPG3 is a Medicago sativa polygalacturonase gene isolated in our laboratory, specifically expressed during the interaction of this plant with its symbiotic partner Sinorhizobium meliloti and which might participate in tip growth processes during symbiosis. We have used MsPG3-GFP fusions to study in vivo protein transport processes and localization during root hair growth. Different MsPG3-GFP fusions were expressed in Medicago truncatula'hairy roots' following a protocol developed for this study and also tested by transient expression in onion epidermal cells. Preferential accumulation of an MsPG3-GFP fusion protein in the tip of the growing root hair at different developmental stages was found, confirming the delivery of MsPG3 to the newly synthesized cell wall. This indicates that this protein may participate in tip growth processes during symbiosis and, in addition, that this fusion could be a useful tool to study this process in plants.


Asunto(s)
Proteínas Luminiscentes/genética , Medicago/genética , Poligalacturonasa/genética , Técnicas de Transferencia de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes , Medicago/metabolismo , Cebollas/metabolismo , Epidermis de la Planta/metabolismo , Raíces de Plantas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética
20.
Plant Physiol ; 131(3): 1091-103, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12644661

RESUMEN

Phytohormones as well as temporal and spatial regulation of the cell cycle play a key role in plant development. Here, we investigated the function and regulation of an alfalfa (Medicago sativa) A2-type cyclin in three distinct root developmental programs: in primary and secondary root development, nodule development, and nematode-elicited gall formation. Using transgenic plants carrying the Medsa;cycA2;2 promoter-beta-glucuronidase gene fusion, in combination with other techniques, cycA2;2 expression was localized in meristems and proliferating cells in the lateral root and nodule primordia. Rapid induction of cycA2;2 by Nod factors demonstrated that this gene is implicated in cell cycle activation of differentiated cells developing to nodule primordia. Surprisingly, cycA2;2 was repressed in the endoreduplicating, division-arrested cells both during nodule development and formation of giant cells in nematode-induced galls, indicating that CycA2;2 was dispensable for S-phase in endoreduplication cycles. Overexpression of cycA2;2 in transgenic plants corresponded to wild type protein levels and had no apparent phenotype. In contrast, antisense expression of cycA2;2 halted regeneration of somatic embryos, suggesting a role for CycA2;2 in the formation or activity of apical meristems. Expression of cycA2;2 was up-regulated by auxins, as expected from the presence of auxin response elements in the promoter. Moreover, auxin also affected the spatial expression pattern of this cyclin by shifting the cycA2;2 expression from the phloem to the xylem poles.


Asunto(s)
Ciclina A/genética , Ciclina A/metabolismo , Ácidos Indolacéticos/farmacología , Medicago/metabolismo , Meristema/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Ciclina A/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Medicago/genética , Medicago/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Mitosis/genética , Mitosis/fisiología , Datos de Secuencia Molecular , Nematodos/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tumores de Planta/genética , Tumores de Planta/parasitología , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA