RESUMEN
The study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of the digital holographic camera, thus making it possible to adapt the depth of the holographing scene to the parameters of the plankton habitat, perform automatic registration of the "zero" frame and automatic calibration, and carry out natural experiments with plankton photostimulation. The paper considers the results of a long-term digital holographic experiment on the biotesting of the water area in Arctic latitudes. It shows additional possibilities arising during the spectral processing of long time series of plankton parameters obtained during monitoring measurements by a submersible digital holographic camera. In particular, information on the rhythmic components of the ecosystem and behavioral characteristics of plankton, which can be used as a marker of the ecosystem well-being disturbance, is thus obtained.
RESUMEN
Our previous studies showed that the change in the plankton response to light could be an indicator of environmental pollution. This study experimentally reveals that the response of Daphnia magna Straus and Daphnia pulex plankton ensembles to photostimulation depends on the intensity of the attracting light. This makes it difficult to identify the occurrence and change of pollutant concentration. The large variability in the magnitude of the behavioral response is caused by the nonlinear response of plankton ensembles to the intensity of the attractor stimulus. As the intensity of the photostimulation increases, the variability of the phototropic response passes through increase, decrease, and relative stabilization phases. The paper proposes a modification of the photostimulation method-paired photostimulation involving successive exposure to two photostimuli of increasing intensity. The first stimulus stabilizes the behavioral response, while the increase in response to the second stimulus makes it possible to more accurately assess the responsiveness of the plankton ensemble. The paper studies the sensitivity of the method of paired stimulation of the behavioral response of different types of freshwater plankton ensembles: Daphnia magna Straus, Daphnia pulex to the effects of pollutants (potassium bichromate, microplastic). The study demonstrates good reliability and increased sensitivity of this method of detecting changes in environmental toxicity compared to single photostimulation or traditional bioindication through the survival rate of test organisms.