Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(6): e29687, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783821

RESUMEN

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Resultado del Embarazo , Trofoblastos , Femenino , Trofoblastos/virología , Embarazo , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Infecciones por Orthomyxoviridae/virología , Gripe Humana/virología , Línea Celular , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Complicaciones Infecciosas del Embarazo/virología , Placenta/virología , Replicación Viral
2.
Small ; : e2307171, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054810

RESUMEN

Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.

3.
J Med Virol ; 95(2): e28476, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609855

RESUMEN

The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor-binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human-type receptors than for avian-type receptors, highlighting the potential risk of avian-to-human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Cobayas , Ratones , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H7N3 del Virus de la Influenza A , Aves de Corral , Pollos , China/epidemiología , Filogenia , Virus Reordenados/genética
4.
Microvasc Res ; 147: 104493, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738986

RESUMEN

BACKGROUND: In coronary microvascular disease (CMD) patients, the incidence of major adverse cardiovascular events (MACEs) in patients with myocardial perfusion reserve index (MPRI) ≤ 1.47 is three times higher than that in MPRI > 1.47. We investigated whether the increase of glycated hemoglobin A1c (HbA1c) could increase the risk of MPRI ≤1.47 in diabetic and non-diabetic patients. METHODS: From November 2019, patients with ischemic symptoms but without obstructive coronary disease were screened. Use MPRI measured by stress perfusion cardiac magnetic resonance (CMR) to reflect microcirculation blood perfusion, and MPRI <2.5 were included. The patients were divided into two groups based on MPRI was greater or <1.47. The risk factors for CMD were explored using logistic regression analysis. RESULTS: A total of 80 patients with an MPRI of 1.69 ± 0.79 were included. CMD patients with an MPRI of ≤1.47(n = 33) were higher than MPRI of >1.47(n = 47) in age, presence of diabetes mellitus, fasting blood glucose levels and HbA1c levels (P < 0.05). In non-diabetic patients, increased HbA1c was associated with the risk of MPRI≤1.47 (OR = 0.017, 95%CI: 0.050-1.107, P = 0.045). Compared with non-diabetic patients with HbA1c < 6.0, non-diabetic patients with HbA1c ≥ 6.0 increased the risk of MPRI of ≤1.47 (OR = 0.219, 95%CI: 0.069-0.697, P = 0.010). In diabetic patients, HbA1c was not associated with the risk of MPRI of ≤1.47 (OR = 1.043, 95%CI: 0.269, 4.044, P = 0.952). And compared with non-diabetic patients with HbA1c <6.0, diabetic patients with HbA1c <6.0 (OR = 0.917, 95%CI: 0.233-3.610, P = 0.901) or ≥6.0 (OR = 0.326, 95%CI: 0.073-1.446, P = 0.140), the risk of MPRI ≤ 1.47 was not further increased. CONCLUSIONS: In non-diabetic patients, elevated HbA1c is related to MPRI≤1.47(a value increased incidence of MACEs). Therefore, in patients with undiagnosed diabetes, early management of glycosylated hemoglobin is very important. TRIAL REGISTRATION: This clinical trial has been registered in the Chinese clinical Trial Registry with an identifier: ChiCTR1900025810.


Asunto(s)
Enfermedad de la Arteria Coronaria , Angina Microvascular , Humanos , Hemoglobina Glucada , Microcirculación , Circulación Coronaria , Perfusión , Espectroscopía de Resonancia Magnética
5.
Nat Mater ; 20(10): 1347-1352, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34017117

RESUMEN

Amorphous materials have no long-range order, but there are ordered structures at short range (2-5 Å), medium range (5-20 Å) and even longer length scales1-5. While regular6,7 and semiregular polyhedra8-10 are often found as short-range ordering in amorphous materials, the nature of medium-range order has remained elusive11-14. Consequently, it is difficult to determine whether there exists any structural link at medium range or longer length scales between the amorphous material and its crystalline counterparts. Moreover, an amorphous material often crystallizes into a phase of different composition15, with very different underlying structural building blocks, further compounding the issue. Here, we capture an intermediate crystalline cubic phase in a Pd-Ni-P amorphous alloy and reveal the structure of the medium-range order, a six-membered tricapped trigonal prism cluster (6M-TTP) with a length scale of 12.5 Å. We find that the 6M-TTP can pack periodically to several tens of nanometres to form the cube phase. Our experimental observations provide evidence of a structural link between the amorphous and crystalline phases in a Pd-Ni-P alloy at the medium-range length scale and suggest that it is the connectivity of the 6M-TTP clusters that distinguishes the crystalline and amorphous phases. These findings will shed light on the structure of amorphous materials at extended length scales beyond that of short-range order.

6.
PLoS Pathog ; 16(4): e1008409, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32287326

RESUMEN

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.


Asunto(s)
Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades de los Perros/virología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Zoonosis/virología , Animales , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Enfermedades de los Perros/transmisión , Perros , Hurones , Cobayas , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Humana/transmisión , Gripe Humana/virología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Estados Unidos , Zoonosis/transmisión
7.
Small ; 17(20): e2008036, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33797192

RESUMEN

Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.


Asunto(s)
Complejos de Coordinación , Hierro , Ligandos , Modelos Moleculares , Conformación Molecular
8.
Angew Chem Int Ed Engl ; 60(47): 25028-25033, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34545674

RESUMEN

Quartz crystal microbalance (QCM) is one of the powerful tools for the studies of molecular recognition and chiral discrimination. Its efficiency mainly relies on the design of the functional sensitive layer on the electrode surface. However, the organic sensitive layer may easily cause dissipation of oscillation or detachment and weaken the signal transfer during the molecular recognition processes. In this work, we reveal for the first time that the bare metal surface without the organic selector layer has the capability for chiral recognition in the QCM system. During the adsorption of various chiral amino acids, relatively higher selectivity of D-enantiomers on gold (Au) surface was shown by the QCM detection. Based on analyses of the surface crystalline structure and density functional theory calculations, we demonstrate that the chiral nature of Au surface plays an important role in the selective binding of specific D-amino acids. These results may open new insights on chiral detection by QCM system. It will also promote the construction of novel chiral sensing systems with both efficient detection and separation capability.

9.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597771

RESUMEN

Efficient human-to-human transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission are still not fully understood. In this study, we compared the respiratory droplet transmissibilities of four H7N9 viruses that are genetic closely related and found that these viruses have dissimilar transmissibilities in guinea pigs: A/Anhui/1/2013 (AH/1) transmitted efficiently, whereas the other three viruses did not transmit. The three nontransmissible viruses have one to eight amino acid differences compared with the AH/1 virus. To investigate which of these amino acids is important for transmission, we used reverse genetics to generate a series of reassortants and mutants in the AH/1 background and tested their transmissibility in guinea pigs. We found that the neuraminidase (NA) of the nontransmissible virus A/chicken/Shanghai/S1053/2013 had low enzymatic activity that impaired the transmission of AH/1 virus, and three amino acid mutations-V292I and K627E in PB2 and D156E in M1-independently abolished the transmission of the AH/1 virus. We further found that an NA reassortant and three single-amino-acid mutants replicated less efficiently than the AH/1 virus in A549 cells and that the amino acid at position 156 of M1 affected the morphology of H7N9 viruses. Our study identifies key amino acids in PB2 and M1 that play important roles in H7N9 influenza virus transmission and provides new insights into the transmissibility of influenza virus.IMPORTANCE Efficient transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission remain poorly understood. H7N9 influenza viruses, which emerged in 2013 in China, have caused over 1,560 human infection cases, showing clear pandemic potential. Previous studies have shown that the H7N9 viruses differ in their transmissibility in animal models. In this study, we found two amino acids in PB2 (292V and 627K) and one in M1 (156D) that are extremely important for H7N9 virus transmission. Of note, PB2 292V and M1 156D appear in most H7N9 viruses, and the PB2 627K mutation could easily occur when the H7N9 virus replicates in humans. Our study thus identifies new amino acids that are important for influenza virus transmission and suggests that just a few key amino acid changes can render the H7N9 virus transmissible in mammals.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/genética , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/transmisión , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Células A549 , Sustitución de Aminoácidos , Animales , Expresión Génica , Cobayas , Humanos , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Mutación , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados/metabolismo , Virus Reordenados/patogenicidad , Genética Inversa , Relación Estructura-Actividad , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
10.
Angew Chem Int Ed Engl ; 59(1): 182-186, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31532066

RESUMEN

Chiral molecular self-assemblies were usually achieved using short-range intermolecular interactions, such as hydrogen-, metal-organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short-range chirality recognition. Long-range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long-range chirality recognition is presented between neighboring 3-bromo-naphthalen-2-ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction-induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.

11.
Phys Chem Chem Phys ; 21(27): 14556-14561, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31215569

RESUMEN

Metallic glass (MG) ultrathin films with hierarchical structure were in situ grown and characterized by scanning tunneling microscopy. A reversible dynamic behavior is observed at 77 K indicating a high mobility within the Fe85Sc15 MG ultrathin films. The complete scheme of the phase transition from amorphous solid to supercooled liquid and further to the crystalline phase is depicted. We find Fe85Sc15 MG ultrathin films with a reduction of the glass transition temperature of ∼290 K and an expanded temperature window of the supercooled liquid region of 180 K, which is almost 6 times larger than that of the conventional bulk MG with identical composition.

12.
Proc Natl Acad Sci U S A ; 113(2): 392-7, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26711995

RESUMEN

Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans.


Asunto(s)
Hurones/genética , Hurones/virología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Adulto , Animales , Antígenos Virales/inmunología , China/epidemiología , Evolución Molecular , Genotipo , Hemaglutininas/genética , Humanos , Inmunidad , Vigilancia Inmunológica , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/virología , Ratones , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Prevalencia , Porcinos , Virulencia , Replicación Viral
13.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814518

RESUMEN

Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains.IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by increasing virus affinity for human-type receptors. In this study, we explored the genetic basis of the transmissibility difference between two Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses in guinea pigs and found that the amino acid glutamic acid at position 225 in the HA1 protein plays a critical role in the transmission of EAH1N1 virus by increasing the efficiency of viral assembly and budding.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Replicación Viral/genética , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Femenino , Cobayas , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/transmisión
15.
J Am Chem Soc ; 139(10): 3669-3675, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28186738

RESUMEN

Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

16.
J Virol ; 90(4): 1872-9, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656683

RESUMEN

UNLABELLED: We isolated two H5N1 viruses, A/duck/Hunan/S4020/2008 (DK/08) and A/chicken/Guangxi/S2039/2009 (CK/09), from live-bird markets during routine surveillance and found that these two viruses are genetically similar but differ in their replication and virulence in mice. The CK/09 virus is lethal for mice with a 50% mouse lethal dose (MLD50) of 1.6 log10 50% egg infectious doses (EID50), whereas the DK/08 virus is nonpathogenic for mice with an MLD50 value of 6.2 log10 EID50. We explored the genetic basis of the virulence difference of these two viruses by generating a series of reassortant viruses and mutants in the lethal virus CK/09 background and evaluating their virulence in mice. We found that the PB1 gene of the DK/08 virus dramatically attenuated the virulence of the CK/09 virus and that the amino acid at position 622 in PB1 made an important contribution. We further demonstrated that the mutation of glycine (G) to aspartic acid (D) at position 622 in PB1 partially impaired the binding of PB1 to viral RNA, thereby dramatically decreasing the polymerase activity and attenuating H5N1 virus virulence in mice. Our results identify a novel virulence-related marker of H5N1 influenza viruses and provide a new target for live attenuated vaccine development. IMPORTANCE: H5N1 avian influenza viruses have caused the deaths of nearly 60% of the humans that they have infected since 1997 and clearly represent a threat to public health. A thorough understanding of the genetic basis of virulence determinants will provide important insights for antiviral drug and live attenuated vaccine development. Several virulence-related markers in the PB2, PA, M1, and NS1 proteins of H5N1 viruses have been identified. In this study, we isolated two H5N1 avian influenza viruses that are genetically similar but differ in their virulence in mice, and we identified a new virulence-related marker in the PB1 gene. We found that the mutation of glycine (G) to aspartic acid (D) at position 622 in PB1 partially impairs the binding of PB1 to viral RNA, thereby attenuating H5N1 virus virulence in mice. This newly identified virulence-related marker could be applied to the development of live attenuated vaccines against H5N1 influenza.


Asunto(s)
Glicina/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Femenino , Glicina/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Dosificación Letal Mediana , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Virus Reordenados/fisiología , Genética Inversa , Análisis de Supervivencia , Proteínas Virales/genética , Virulencia , Factores de Virulencia/genética , Replicación Viral
17.
J Virol ; 90(21): 9797-9805, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558424

RESUMEN

The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE: Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Pollos , China/epidemiología , Patos/virología , Genoma Viral/genética , Genotipo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Filogenia , Aves de Corral , Vacunación/métodos
18.
J Virol ; 90(3): 1455-69, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581996

RESUMEN

UNLABELLED: H4 avian influenza virus (AIV) is one of the most prevalent influenza virus subtypes in the world. However, whether H4 AIVs pose a threat to public health remains largely unclear. Here, we analyzed the phylogenetic relationships, receptor binding properties, replication, and transmissibility in mammals of H4 AIVs isolated from live poultry markets in China between 2009 and 2012. Genomic sequence analysis of 36 representative H4 viruses revealed 32 different genotypes, indicating that these viruses are undergoing complex and frequent reassortment events. All 32 viruses tested could replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that the H4 AIVs bound to α-2,6-linked glycans, although they retained the binding preference for α-2,3-linked glycans. When we tested the direct-contact transmission of 10 H4 viruses in guinea pigs, we found that three viruses did not transmit to any of the contact animals, one virus transmitted to one of three contact animals, and six viruses transmitted to all three contact animals. When we further tested the respiratory droplet transmissibility of four of the viruses that transmitted efficiently via direct contact, we found that three of them could transmit to one or two of the five exposed animals. Our study demonstrates that the current circulating H4 AIVs can infect, replicate in, and transmit to mammalian hosts, thereby posing a potential threat to human health. These findings emphasize the continual need for enhanced surveillance of H4 AIVs. IMPORTANCE: Numerous surveillance studies have documented the wide distribution of H4 AIVs throughout the world, yet the biological properties of H4 viruses have not been well studied. In this study, we found that multiple genotypes of H4 viruses are cocirculating in the live poultry markets of China and that H4 viruses can replicate in mice, possess human-type receptor binding specificity, and transmit between guinea pigs via direct contact. Strikingly, some H4 strains also can transmit via respiratory droplet, albeit with limited efficiency. These results clearly show the potential threat posed by H4 viruses to public health.


Asunto(s)
Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Aves de Corral/virología , Acoplamiento Viral , Replicación Viral , Animales , China , Análisis por Conglomerados , Femenino , Genoma Viral , Cobayas , Virus de la Influenza A/genética , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/transmisión , Filogenia , ARN Viral/genética , Receptores Virales/análisis , Análisis de Secuencia de ADN , Homología de Secuencia
19.
J Virol ; 89(12): 6506-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855738

RESUMEN

We analyzed eight H10N8 viruses isolated from ducks and chickens in live poultry markets from 2009 to 2013 in China. These viruses showed distinct genetic diversity and formed five genotypes: the four duck isolates formed four different genotypes, whereas the four chicken viruses belong to a single genotype. The viruses bound to both human- and avian-type receptors, and four of the viruses caused 12.7% to 22.5% body weight loss in mice.


Asunto(s)
Pollos/virología , Patos/virología , Variación Genética , Subtipo H10N8 del Virus de la Influenza A/fisiología , Acoplamiento Viral , Replicación Viral , Animales , Peso Corporal , China , Modelos Animales de Enfermedad , Genotipo , Humanos , Subtipo H10N8 del Virus de la Influenza A/genética , Subtipo H10N8 del Virus de la Influenza A/aislamiento & purificación , Ratones , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Virulencia
20.
Angew Chem Int Ed Engl ; 55(25): 7157-60, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27144822

RESUMEN

Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal-organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule-substrate interaction as revealed by DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA