Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 585(7824): 288-292, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641834

RESUMEN

The mitochondrial electron transport chain (ETC) is necessary for tumour growth1-6 and its inhibition has demonstrated anti-tumour efficacy in combination with targeted therapies7-9. Furthermore, human brain and lung tumours display robust glucose oxidation by mitochondria10,11. However, it is unclear why a functional ETC is necessary for tumour growth in vivo. ETC function is coupled to the generation of ATP-that is, oxidative phosphorylation and the production of metabolites by the tricarboxylic acid (TCA) cycle. Mitochondrial complexes I and II donate electrons to ubiquinone, resulting in the generation of ubiquinol and the regeneration of the NAD+ and FAD cofactors, and complex III oxidizes ubiquinol back to ubiquinone, which also serves as an electron acceptor for dihydroorotate dehydrogenase (DHODH)-an enzyme necessary for de novo pyrimidine synthesis. Here we show impaired tumour growth in cancer cells that lack mitochondrial complex III. This phenotype was rescued by ectopic expression of Ciona intestinalis alternative oxidase (AOX)12, which also oxidizes ubiquinol to ubiquinone. Loss of mitochondrial complex I, II or DHODH diminished the tumour growth of AOX-expressing cancer cells deficient in mitochondrial complex III, which highlights the necessity of ubiquinone as an electron acceptor for tumour growth. Cancer cells that lack mitochondrial complex III but can regenerate NAD+ by expression of the NADH oxidase from Lactobacillus brevis (LbNOX)13 targeted to the mitochondria or cytosol were still unable to grow tumours. This suggests that regeneration of NAD+ is not sufficient to drive tumour growth in vivo. Collectively, our findings indicate that tumour growth requires the ETC to oxidize ubiquinol, which is essential to drive the oxidative TCA cycle and DHODH activity.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Ubiquinona/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular , Ciona intestinalis/enzimología , Ciclo del Ácido Cítrico , Citosol/metabolismo , Dihidroorotato Deshidrogenasa , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/metabolismo , Humanos , Levilactobacillus brevis/enzimología , Masculino , Ratones , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Neoplasias/enzimología , Fosforilación Oxidativa , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquinona/metabolismo
2.
Mol Cell ; 70(3): 383-384, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727615

RESUMEN

Maintaining redox balance in cancer cells is essential for tumor development and progression. In this issue of Molecular Cell, Tsang et al. (2018) identify an evolutionarily conserved mTORC1-dependent mechanism by which cancer cells control redox homeostasis in ischemic tumor microenvironment.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Nutrientes , Oxidación-Reducción , Fosforilación , Transducción de Señal , Superóxido Dismutasa-1 , Serina-Treonina Quinasas TOR
3.
Mol Cell ; 61(2): 199-209, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26725009

RESUMEN

Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation.


Asunto(s)
Ciclo del Ácido Cítrico , Potencial de la Membrana Mitocondrial , Acetilación , Proliferación Celular , Respiración de la Célula , ADN Polimerasa gamma , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Metaboloma , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Consumo de Oxígeno , Proteínas de Plantas/metabolismo , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo
4.
J Biol Chem ; 293(20): 7499-7507, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29282291

RESUMEN

Reactive oxygen species (ROS) mediate redox signaling necessary for numerous cellular functions. Yet, high levels of ROS in cells and tissues can cause damage and cell death. Therefore, regulation of redox homeostasis is essential for ROS-dependent signaling that does not incur cellular damage. Cells achieve this optimal balance by coordinating ROS production and elimination. In this Minireview, we discuss the mechanisms by which proliferating cancer and T cells maintain a carefully controlled redox balance. Greater insight into such redox biology may enable precisely targeted manipulation of ROS for effective medical therapies against cancer or immunological disorders.


Asunto(s)
Neoplasias/inmunología , Neoplasias/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Homeostasis , Humanos , Neoplasias/metabolismo , Oxidación-Reducción , Transducción de Señal , Linfocitos T/metabolismo
5.
Nat Chem Biol ; 13(12): 1274-1279, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058724

RESUMEN

Paraquat, a herbicide linked to Parkinson's disease, generates reactive oxygen species (ROS), which causes cell death. Because the source of paraquat-induced ROS production remains unknown, we conducted a CRISPR-based positive-selection screen to identify metabolic genes essential for paraquat-induced cell death. Our screen uncovered three genes, POR (cytochrome P450 oxidoreductase), ATP7A (copper transporter), and SLC45A4 (sucrose transporter), required for paraquat-induced cell death. Furthermore, our results revealed POR as the source of paraquat-induced ROS production. Thus, our study highlights the use of functional genomic screens for uncovering redox biology.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/efectos de los fármacos , Paraquat/farmacología , Muerte Celular/efectos de los fármacos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Relación Dosis-Respuesta a Droga , Humanos , Células Jurkat , Estructura Molecular , Oxidación-Reducción , Paraquat/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
6.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33148642

RESUMEN

Mitochondria-derived reactive oxygen species (mROS) are required for the survival, proliferation, and metastasis of cancer cells. The mechanism by which mitochondrial metabolism regulates mROS levels to support cancer cells is not fully understood. To address this, we conducted a metabolism-focused CRISPR-Cas9 genetic screen and uncovered that loss of genes encoding subunits of mitochondrial complex I was deleterious in the presence of the mitochondria-targeted antioxidant mito-vitamin E (MVE). Genetic or pharmacologic inhibition of mitochondrial complex I in combination with the mitochondria-targeted antioxidants, MVE or MitoTEMPO, induced a robust integrated stress response (ISR) and markedly diminished cell survival and proliferation in vitro. This was not observed following inhibition of mitochondrial complex III. Administration of MitoTEMPO in combination with the mitochondrial complex I inhibitor phenformin decreased the leukemic burden in a mouse model of T cell acute lymphoblastic leukemia. Thus, mitochondrial complex I is a dominant metabolic determinant of mROS-dependent cellular fitness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA