Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38533884

RESUMEN

We formulate and implement the Variational Quantum Eigensolver Self Consistent Field (VQE-SCF) algorithm in combination with polarizable embedding (PE), thereby extending PE to the regime of quantum computing. We test the resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the computational stress on the quantum device is only slightly increased in terms of gate counts compared to regular VQE-SCF. On the other hand, no increase in shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling of real chemical systems using a simulation of the reaction barrier of the Diels-Alder reaction between furan and ethene as an example.

2.
Chembiochem ; 24(21): e202300490, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581408

RESUMEN

Nτ -methylation of His73 in actin by histidine methyltransferase SETD3 plays an important role in stabilising actin filaments in eukaryotes. Mutations in actin and overexpression of SETD3 have been related to human diseases, including cancer. Here, we investigated the importance of Trp79 in ß-actin on productive human SETD3 catalysis. Substitution of Trp79 in ß-actin peptides by its chemically diverse analogues reveals that the hydrophobic Trp79 binding pocket modulates the catalytic activity of SETD3, and that retaining a bulky and hydrophobic amino acid at position 79 is important for efficient His73 methylation by SETD3. Molecular dynamics simulations show that the Trp79 binding pocket of SETD3 is ideally shaped to accommodate large and hydrophobic Trp79, contributing to the favourable release of water molecules upon binding. Our results demonstrate that the distant Trp79 binding site plays an important role in efficient SETD3 catalysis, contributing to the identification of new SETD3 substrates and the development of chemical probes targeting the biomedically important SETD3.


Asunto(s)
Actinas , Metiltransferasas , Humanos , Metiltransferasas/metabolismo , Actinas/química , Histona Metiltransferasas/química , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Histidina/química , Metilación , Catálisis
3.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108167

RESUMEN

Histone lysine methacrylation and crotonylation are epigenetic marks that play important roles in human gene regulation. Here, we explore the molecular recognition of histone H3 peptides possessing methacryllysine and crotonyllysine at positions 18 and 9 (H3K18 and H3K9) by the AF9 YEATS domain. Our binding studies demonstrate that the AF9 YEATS domain displays a higher binding affinity for histones possessing crotonyllysine than the isomeric methacryllysine, indicating that AF9 YEATS distinguishes between the two regioisomers. Molecular dynamics simulations reveal that the crotonyllysine/methacryllysine-mediated desolvation of the AF9 YEATS domain provides an important contribution to the recognition of both epigenetic marks. These results provide important knowledge for the development of AF9 YEATS inhibitors, an area of biomedical interest.


Asunto(s)
Regulación de la Expresión Génica , Histonas , Proteínas Nucleares , Humanos , Histonas/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos , Proteínas Nucleares/metabolismo
4.
Mol Pharm ; 19(7): 2248-2253, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512380

RESUMEN

Much effort has been invested in the search for modulators of membrane transport proteins such as P-glycoprotein (P-gp) to improve drug bioavailability and reverse multidrug resistance in cancer. Nonionic surfactants, a class of pharmaceutical excipients, are known to inhibit such proteins, but knowledge about the exact mechanism of this inhibition is scarce. Here, we perform multiscale molecular dynamics simulations of one of these surfactants, polysorbate 20 (PS20), to reveal the behavior of such compounds on the molecular level and thereby discover the molecular mechanism of the P-gp inhibition. We show that the amphiphilic headgroup of PS20 is too hydrophobic to partition in the water phase, which drives the binding of PS20 to the amphiphilic drug-binding domain of P-gp and thereby causes the inhibition of the protein. Based on our findings, we conclude that PS20 primarily inhibits P-gp through direct binding to the drug-binding domain (DBD) from the extracellular leaflet.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Polisorbatos , Subfamilia B de Transportador de Casetes de Unión a ATP , Excipientes/química , Polisorbatos/química , Tensoactivos/química
5.
Org Biomol Chem ; 20(8): 1723-1730, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142326

RESUMEN

SETD3-catalysed N3-methylation of His73 in ß-actin plays a key role in stabilisation of actin filaments in the metazoan cells. Overexpression and/or dysregulation of SETD3 is associated with several human pathologies, including cancer. Here, we examined the role of the Ile71 residue in ß-actin on human SETD3 catalysis. Substitution of Ile71 in ß-actin peptides by its natural and unnatural mimics reveals that the 'secondary' Ile71 binding pocket modulates the substrate efficiency of ß-actin. Our enzymatic work demonstrates that human SETD3 can accommodate structurally diverse hydrophobic side chains in its Ile71 binding pocket, providing clear limits of the size and shape of Ile analogues. Water thermodynamics calculations reveal that the Ile71 pocket is occupied by high-energy water molecules, that are released upon the Ile71 binding, contributing favourably to the SETD3-ßA complex formation. The work highlights that the hydrophobic Ile71 binding site plays an essential role in SETD3 catalysis, contributing to an ongoing effort in the design and development of chemical probes targeting SETD3.


Asunto(s)
Actinas/metabolismo , Histona Metiltransferasas/metabolismo , Isoleucina/metabolismo , Actinas/química , Biocatálisis , Histidina/química , Histidina/metabolismo , Humanos , Isoleucina/química , Modelos Moleculares , Conformación Molecular
6.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164245

RESUMEN

Epigenetic readout of the combinatorial posttranslational modification comprised of trimethyllysine and asymmetric dimethylarginine (H3K4me3R8me2a) takes place via biomolecular recognition of tandem Tudor-domain-containing protein Spindlin1. Through comparative thermodynamic data and molecular dynamics simulations, we sought to explore the binding scope of asymmetric dimethylarginine mimics by Spindlin1. Herein, we provide evidence that the biomolecular recognition of H3K4me2R8me2a is not significantly affected when R8me2a is replaced by dimethylarginine analogues, implying that the binding of K4me3 provides the major binding contribution. High-energy water molecules inside both aromatic cages of the ligand binding sites contribute to the reader-histone association upon displacement by histone peptide, with the K4me3 hydration site being lower in free energy due to a flip of Trp151.


Asunto(s)
Arginina/análogos & derivados , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Dominio Tudor , Arginina/química , Arginina/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Histonas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/química , Simulación de Dinámica Molecular , Fosfoproteínas/química , Unión Proteica , Conformación Proteica , Termodinámica
7.
J Org Chem ; 86(2): 1471-1488, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33370098

RESUMEN

Nile Red is a benzo[a]phenoxazone dye containing a diethylamino substituent at the 9-position. In recent years, it has become a popular histological stain for cellular membranes and lipid droplets due to its unrivaled fluorescent properties in lipophilic environments. This makes it an attractive lead for chemical decoration to tweak its attributes and optimize it for more specialized microscopy techniques, e.g., fluorescence lifetime imaging or two-photon excited fluorescence microscopy, to which Nile Red has never been optimized. Herein, we present synthesis approaches to a series of monosubstituted Nile Red derivatives (9-diethylbenzo[a]phenoxazin-5-ones) starting from 1-naphthols or 1,3-naphthalenediols. The solvatochromic responsiveness of these fluorophores is reported with focus on how the substituents affect the absorption and emission spectra, luminosity, fluorescence lifetimes, and two-photon absorptivity. Several of the analogues emerge as strong candidates for reporting the polarity of their local environment. Specifically, the one- and two-photon excited fluorescence of Nile Red turns out to be very responsive to substitution, and the spectroscopic features can be finely tuned by judiciously introducing substituents of distinct electronic character at specific positions. This new toolkit of 9-diethylbenzo[a]phenoxazine-5-ones constitutes a step toward the next generation of optical molecular probes for advancing the understanding of lipid structures and cellular processes.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Microscopía Fluorescente , Oxazinas , Espectrometría de Fluorescencia
8.
Phys Chem Chem Phys ; 23(15): 9139-9146, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885105

RESUMEN

The malononitrile group is considered one of the strongest natural electron-withdrawing groups in a chemist's arsenal. However, surprisingly little is known about how this group functions in push-pull fluorophores. In a recent computational study, we reported that replacing the ketone group of the traditional push-pull dye Laurdan with a malononitrile group significantly improves the optical properties while retaining the membrane behavior of the parent molecule Laurdan. Motivated by these results, we report here the synthesis and photophysical characterization of the said compound, 6-(1-undecyl-2,2-dicyanovinyl)-N,N-dimethyl-2-naphthylamine (CN-Laurdan). To our surprise, this new CN-Laurdan probe is found to be much less bright than the parent Laurdan due to a large drop in the fluorescence quantum yield. Using computational methods, we determine that the origin of this low quantum yield is related to the existence of a non-radiative decay pathway related to a rotation of the malononitrile moiety, suggesting that the molecule could nonetheless function very well as a molecular rotor. We confirm experimentally that CN-Laurdan functions as a molecular rotor by measuring the quantum yield in methanol/glycerol mixtures of increasing viscosity. Specifically, we found a consistent increase in the quantum yield across the entire range of tested viscosities.

9.
Biochemistry ; 59(45): 4407-4420, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33141558

RESUMEN

Niemann Pick type C2 (NPC2) is a small sterol binding protein in the lumen of late endosomes and lysosomes. We showed recently that the yeast homologue of NPC2 together with its binding partner NCR1 mediates integration of ergosterol, the main sterol in yeast, into the vacuolar membrane. Here, we study the binding specificity and the molecular details of lipid binding to yeast NPC2. We find that NPC2 binds fluorescence- and spin-labeled analogues of phosphatidylcholine (PC), phosphatidylserine, phosphatidylinositol (PI), and sphingomyelin. Spectroscopic experiments show that NPC2 binds lipid monomers in solution but can also interact with lipid analogues in membranes. We further identify ergosterol, PC, and PI as endogenous NPC2 ligands. Using molecular dynamics simulations, we show that NPC2's binding pocket can adapt to the ligand shape and closes around bound ergosterol. Hydrophobic interactions stabilize the binding of ergosterol, but binding of phospholipids is additionally stabilized by electrostatic interactions at the mouth of the binding site. Our work identifies key residues that are important in stabilizing the binding of a phospholipid to yeast NPC2, thereby rationalizing future mutagenesis studies. Our results suggest that yeast NPC2 functions as a general "lipid solubilizer" and binds a variety of amphiphilic lipid ligands, possibly to prevent lipid micelle formation inside the vacuole.


Asunto(s)
Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas Portadoras/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química
10.
Photochem Photobiol Sci ; 19(10): 1382-1391, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869822

RESUMEN

The solvatochromic fluorophore Nile Red, 9-diethylamino-5H-benzo[a]phenoxazine-5-one, is one of the most commonly used stains to enhance contrast of lipid-rich areas of microscopic biosamples. Quite surprisingly, relatively little is known about the spectrally-resolved two-photon absorption (2PA) properties of this dye despite its promising features for two-photon microscopy of biological matter. For this reason, the two-photon solvatochromism of Nile Red still remains an uncharted territory as well. Also, no study has yet reported on how electron-withdrawing substituents attached to the Nile Red backbone affect its solvatochromic properties and two-photon brightness. In this paper, we demonstrate how solvent polarity influences the one- and two-photon absorption spectra of Nile Red as well as its fluorescence parameters, and we present new analogues that contain -CF3, -F and -Br substituents on its eastern side. Two-photon excited fluorescence experiments in a broad spectral range (780-1240 nm) and electronic structure calculations show that both the nature and location of the substituent have particular influence on the strength of 2PA, peaking in all cases at approx. 860 and 1050 nm. 2PA cross sections are higher at 1050 nm than at 860 nm, which suggests that Nile Red and its analogues are best suited for two-photon imaging employing excitation in the NIR-II optical transparency window of biological tissues.


Asunto(s)
Colorantes Fluorescentes/química , Hidrocarburos Halogenados/química , Oxazinas/química , Fotones , Teoría Funcional de la Densidad , Estructura Molecular , Espectrometría de Fluorescencia
11.
J Chem Inf Model ; 60(4): 2268-2281, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32233488

RESUMEN

Intracellular transport of cholesterol and related sterols relies to a large degree on nonvesicular mechanisms, which are only partly understood at the molecular level. Aster proteins belonging to the Lam family of sterol transfer proteins have recently been identified as important catalysts of nonvesicular sterol exchange between the plasma membrane (PM) and endoplasmic reticulum (ER). Here, we used a range of computational tools to study the molecular mechanisms underlying sterol binding as well as multisterol ligand specificity of Aster-A. Our study focused primarily on gaining atomistic insight into the bound ligand-protein complex and was, on this basis, performed in the absence of any membrane. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations provide a rationale for the experimentally found ranking of binding affinities of various sterols to Aster-A. In particular, the polarity of the sterols and the length of their alkyl chain could be identified as being critical determinants of ligand affinity. A Gibbs free energy decomposition identified a charged residue, Glu444, at the base of the binding pose as an important control point for sterol binding. Removing its net charge via protonation was found to cause significant changes to the environment surrounding this residue. In addition, the protonation of Glu444 was found to be paralleled by a large redistribution of molecular flexibility in the Aster domain. This finding was supplemented by multiple branched adaptive steered molecular dynamics (MB-ASMD) simulations by which we defined a possible molecular path for sterol release and demonstrated the importance of Glu444 in this process.


Asunto(s)
Membrana Celular , Retículo Endoplásmico , Unión Proteica , Esteroles , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Esteroles/metabolismo
12.
J Chem Phys ; 152(21): 214115, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505165

RESUMEN

The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.

13.
Med Res Rev ; 39(6): 2194-2238, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31002405

RESUMEN

Solvent-exposed regions, or solvent-filled pockets, within or adjacent to the ligand-binding sites of drug-target proteins provide opportunities for substantial modifications of existing small-molecular drug molecules without serious loss of activity. In this review, we present recent selected examples of exploitation of solvent-exposed regions of proteins in drug design and development from the recent medicinal-chemistry literature.


Asunto(s)
Diseño de Fármacos , Proteínas/química , Solventes/química , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares
14.
Photochem Photobiol Sci ; 18(7): 1858-1865, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31231745

RESUMEN

We report spectroscopic characterization of two emissive 2'-deoxycytidine analogues: 5-(5-phenylfuran-2-yl)-2'-deoxycytidine and 5-(1-phenyl-1H-pyrazol-3-yl)-2'-deoxycytidine. Their fluorescent properties were examined using a combined experimental and theory/simulation approach, where the latter was based on Born-Oppenheimer molecular dynamics and time-dependent density functional theory. The analogues were found to exhibit unusually large Stokes shifts in polar media (>100 nm), moderate fluorescence quantum yields, and their emissions were found to be very sensitive to the local dielectric environment. These two analogues of 2'-deoxycytidine thus hold a promising potential as probes in chemical biology. In addition, the accuracy of the theoretical models for determining the optical properties is validated, which opens up for a convenient way of assessing the potential of future probes.

15.
Phys Chem Chem Phys ; 21(28): 15487-15503, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31259332

RESUMEN

In this paper we show a theoretical rational design approach on a series of intrinsically fluorescent analogues of cholesterol (FLACs), called polyene-sterols (P-sterols), followed by a step-by-step selection of potential candidates, employing, sequentially, state-of-the-art quantum mechanical (QM) computations of the optical properties (single- and multiphoton absorption electronic spectroscopies and emission), molecular dynamics (MD) simulations in model membranes, and multiscale approaches (polarizable embedding). This selection converged to a promising candidate that shows simultaneously interesting single- and multiphoton absorption properties as well as emitting properties and good abilities to mimic cholesterol order effects in model membranes.


Asunto(s)
Colesterol/análogos & derivados , Simulación de Dinámica Molecular , Esteroles/química , Fluorescencia , Membranas Artificiales , Teoría Cuántica
16.
Molecules ; 23(2)2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29414908

RESUMEN

The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes) with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916). The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction) as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA) using glutaraldehyde leads to a distinct increase of the lag time compared to native Hb as well as to any other form of derivatization examined in the present study. The Hb-BSA copolymer also displays a slower initial reaction with nitrite under stopped-flow conditions, compared to native Hb.


Asunto(s)
Nitritos/metabolismo , Oxihemoglobinas/metabolismo , Antioxidantes/metabolismo , Sustitutos Sanguíneos , Catálisis , Hemo/química , Hemo/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Conformación Molecular , Mioglobina/metabolismo , Nitritos/química , Oxidación-Reducción , Oxígeno/metabolismo , Oxihemoglobinas/química , Unión Proteica , Multimerización de Proteína , Análisis Espectral
17.
J Comput Chem ; 38(24): 2108-2117, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643344

RESUMEN

Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation, which results in overestimation of the non-electrostatic repulsion, thereby requiring a scaling of this term. In this work, an optimal scaling factor for the non-electrostatic repulsion term is examined by comparing intermolecular interaction energies obtained with embedding techniques to reference interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc.

18.
J Comput Chem ; 38(9): 601-611, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28160294

RESUMEN

A set of average atom-centered charges and polarizabilities has been developed for three types of phospholipids for use in polarizable embedding calculations. The lipids investigated are 1,2-dimyristoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-L-serine given their common use both in experimental and computational studies. The charges, and to a lesser extent the polarizabilities, are found to depend strongly on the molecular conformation of the lipids. Furthermore, the importance of explicit polarization is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural and dynamical studies. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Biología Computacional , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Conformación Molecular , Simulación de Dinámica Molecular , Óptica y Fotónica , Electricidad Estática
19.
J Org Chem ; 82(4): 2123-2128, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28121143

RESUMEN

The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant Ka = 3 × 1010 M-2. The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (22⊂1) as visualized by a readily apparent color change from yellow to brown.

20.
J Chem Phys ; 146(23): 234101, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28641427

RESUMEN

We present a derivation of linear response theory within polarizable embedding starting from a rigorous quantum-mechanical treatment of a composite system. To this aim, two different subsystem decompositions (symmetric and nonsymmetric) of the linear response function are introduced and the pole structures as well as residues of the individual terms are discussed. In addition to providing a thorough justification for the descriptions used in polarizable embedding models, this theoretical analysis clarifies which form of the response function to use and highlights complications in separating out subsystem contributions to molecular properties. The basic features of the presented expressions and various approximate forms are illustrated by their application to a composite model system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA