Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38927036

RESUMEN

Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.


Asunto(s)
Activación de Linfocitos , Canal Catiónico TRPA1 , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Animales , Ratones , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ligandos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Acetanilidas/farmacología , Ratones Endogámicos C57BL , Calcio/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino , Señalización del Calcio/efectos de los fármacos
2.
Front Cell Dev Biol ; 10: 1059073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561364

RESUMEN

The centrally projecting Edinger-Westphal nucleus (EWcp) is involved in stress adaptation. Transient receptor potential ankyrin 1 (TRPA1) mRNA was previously shown to be expressed abundantly in mouse and human EWcp urocortin 1 (UCN1) positive neurons and reacted to chronic stress. Since UCN1 neurons are deeply implicated in stress-related disorders, we hypothesized that TRPA1/UCN1 neurons are also affected in posttraumatic stress disorder (PTSD). We examined male Trpa1 wild type (WT) and gene-deficient (KO) mice in the single prolonged stress (SPS) model of PTSD. Two weeks later the behavioral changes were monitored by forced swim test (FST) and restraint. The Trpa1 and Ucn1 mRNA expression and the UCN1 peptide content were assessed by RNAscope in situ hybridization technique combined with immunofluorescence labeling in the EWcp. SPS-induced immobility was lower in Trpa1 KO compared to WT animals, both in the FST and restraint, corresponding to diminished depression-like behavior. The copy number of Trpa1 mRNA decreased significantly in EWcp of WT animals in response to SPS. Higher basal Ucn1 mRNA expression was observed in the EWcp of KO animals, that was not affected by SPS exposure. EWcp neurons of WT animals responded to SPS with substantially increased amount of UCN1 peptide content compared to control animals, whereas such changes were not observable in KO mice. The decreased Trpa1 mRNA expression in the SPS model of PTSD associated with increased neuronal UCN1 peptide content suggests that this cation channel might be involved in the regulation of stress adaptation and may contribute to the pathomechanism of PTSD.

3.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34959735

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1), a nonselective cation channel, contributes to several (patho)physiological processes. Smell loss is an early sign in several neurodegenerative disorders, such as multiple sclerosis, Parkinson's and Alzheimer's diseases; therefore, we focused on its role in olfaction and social behaviour with the aim to reveal its potential therapeutic use. The presence of Trpa1 mRNA was studied along the olfactory tract of mice by combined RNAscope in situ hybridisation and immunohistochemistry. The aversive effects of fox and cat odour were examined in parallel with stress hormone levels. In vitro calcium imaging was applied to test if these substances can directly activate TRPA1 receptors. The role of TRPA1 in social behaviour was investigated by comparing Trpa1 wild-type and knockout mice (KO). Trpa1 mRNA was detected in the olfactory bulb and piriform cortex, while its expression was weak in the olfactory epithelium. Fox, but not cat odour directly activated TRPA1 channels in TRPA1-overexpressing Chinese Hamster Ovary cell lines. Accordingly, KO animals showed less aversion against fox, but not cat odour. The social interest of KO mice was reduced during social habituation-dishabituation and social interaction, but not during resident-intruder tests. TRPA1 may contribute to odour processing at several points of the olfactory tract and may play an important role in shaping the social behaviour of mice. Thus, TRPA1 may influence the development of certain social disorders, serving as a potential drug target in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA