Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 559(7712): 125-129, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950729

RESUMEN

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Asunto(s)
Aminopiridinas/farmacología , Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/genética , Mutación , Multimerización de Proteína/genética , Triazinas/farmacología , Alelos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Glutamina/genética , Glutaratos/sangre , Glutaratos/metabolismo , Células HEK293 , Humanos , Isoleucina/genética , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Triazinas/química , Triazinas/uso terapéutico
2.
Methods Mol Biol ; 1289: 137-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709038

RESUMEN

The computational design method described in this chapter is an approach to de-risking the design process due to the limitations of current computational algorithms with respect to predictive accuracy. The method takes advantage of the crystallographically demonstrated interactions between a ligand and its protein target, and through systematic, one fragment replacements allows for quick feedback on the direction of the designs. This design approach can still be useful in the future as computational algorithms improve and become more predictive and reliable.


Asunto(s)
Biología Computacional/métodos , Diseño de Fármacos , Ligandos , Modelos Moleculares , Proteínas/química , Algoritmos , Sitios de Unión/genética , Estructura Molecular , Proteínas/metabolismo
3.
Methods Enzymol ; 493: 357-80, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21371598

RESUMEN

In silico fragment-based drug discovery has become an integral component of the new fragment-based approach that has evolved over the past decade. Protein structure of high quality is essential in carrying out computational designs, and protein flexibility has been shown to impact prospective designs or docking experiments. Here we introduce methodology to calculate protein normal modes and protein molecular dynamics in torsion space which enable the development of multiple protein states to address the natural flexibility of proteins. We also present two fragment-based sampling methods, grand canonical Monte Carlo and systematic sampling, which are used to study protein-fragment interactions by generating fragment ensembles and we discuss the process by which these ensembles are linked to design ligands.


Asunto(s)
Sitios de Unión , Descubrimiento de Drogas/métodos , Unión Proteica , Proteínas/química , Algoritmos , Sitio Alostérico , Biología Computacional , Simulación por Computador , Diseño de Fármacos , Modelos Moleculares , Simulación de Dinámica Molecular , Método de Montecarlo , Conformación Proteica , Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas , Termodinámica , Proteínas Quinasas p38 Activadas por Mitógenos/química
4.
Expert Opin Drug Discov ; 5(11): 1047-65, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22827744

RESUMEN

IMPORTANCE OF THE FIELD: In silico fragment-based drug design (FBDD) is a relatively new approach inspired by the success of the biophysical fragment-based drug discovery field. Here, we review the progress made by this approach in the last decade and showcase how it complements and expands the capabilities of biophysical FBDD and structure-based drug design to generate diverse, efficient drug candidates. AREAS COVERED IN THIS REVIEW: Advancements in several areas of research that have enabled the development of in silico FBDD and some applications in drug discovery projects are reviewed. WHAT THE READER WILL GAIN: The reader is introduced to various computational methods that are used for in silico FBDD, the fragment library composition for this technique, special applications used to identify binding sites on the surface of proteins and how to assess the druggability of these sites. In addition, the reader will gain insight into the proper application of this approach from examples of successful programs. TAKE HOME MESSAGE: In silico FBDD captures a much larger chemical space than high-throughput screening and biophysical FBDD increasing the probability of developing more diverse, patentable and efficient molecules that can become oral drugs. The application of in silico FBDD holds great promise for historically challenging targets such as protein-protein interactions. Future advances in force fields, scoring functions and automated methods for determining synthetic accessibility will all aid in delivering more successes with in silico FBDD.


Asunto(s)
Diseño de Fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Animales , Sitios de Unión , Biofisica , Biología Computacional , Simulación por Computador , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Biblioteca de Péptidos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA