RESUMEN
The development of high-performance photobioreactors equipped with automatic systems for non-invasive real-time monitoring of cultivation conditions and photosynthetic parameters is a challenge in algae biotechnology. Therefore, we developed a chlorophyll (Chl) fluorescence measuring system for the online recording of the light-induced fluorescence rise and the dark relaxation of the flash-induced fluorescence yield (Qa- - re-oxidation kinetics) in photobioreactors. This system provides automatic measurements in a broad range of Chl concentrations at high frequency of gas-tight sampling, and advanced data analysis. The performance of this new technique was tested on the green microalgae Chlamydomonas reinhardtii subjected to a sulfur deficiency stress and to long-term dark anaerobic conditions. More than thousand fluorescence kinetic curves were recorded and analyzed during aerobic and anaerobic stages of incubation. Lifetime and amplitude values of kinetic components were determined, and their dynamics plotted on heatmaps. Out of these data, stress-sensitive kinetic parameters were specified. This implemented apparatus can therefore be useful for the continuous real-time monitoring of algal photosynthesis in photobioreactors.
Asunto(s)
Clorofila/metabolismo , Fotobiorreactores/microbiología , Fotosíntesis/fisiología , Chlamydomonas reinhardtii/metabolismo , Fluorescencia , CinéticaRESUMEN
Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2-nonanone and 2-undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB , electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2-nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.
Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II , Clorofila , Transporte de Electrón , CetonasRESUMEN
The effect of the toxicant 2,3',4,4',6-pentachlorobiphenyl (PCB-119) on the growth, chlorophyll content, and PSII activity of C. sorokiniana cells was investigated. A strong negative effect of the toxicant was observed at PCB concentration of 0.05 µg mL-1 , when culture growth ceased, chlorophyll strongly bleached, and cell death occurred. The use of original highly sensitive fluorimeter to measure three types of high-resolution chlorophyll fluorescence kinetics allowed us to detect an initial dramatic decrease in the activity of primary photosynthetic reactions, followed by their almost complete recovery at the end of the incubation period when most cells were dead. The study of the distribution of individual cells in culture in terms of Fv /Fm parameter, which reflects the quantum yield of PSII photochemistry, revealed the existence of 2-3% of cells retaining high Fv /Fm (>0.7) in the presence of the toxicant. The treated cultures were able to resume growth after prolonged incubation in fresh medium. The high sensitivity fluorescence methods used made it possible to identify stress-resistant cells which maintain high photosynthetic activity in the presence of lethal doses of toxic substances; these cells provide recovery of the population after stress.
Asunto(s)
Chlorella , Microalgas , Microalgas/química , Microalgas/metabolismo , Chlorella/metabolismo , Fotosíntesis , Clorofila/metabolismo , AclimataciónRESUMEN
Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations.