Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Comput Biol ; 18(1): e1009791, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051176

RESUMEN

The effective reproduction number Rt is an epidemiological quantity that provides an instantaneous measure of transmission potential of an infectious disease. While dengue is an increasingly important vector-borne disease, few have used Rt as a measure to inform public health operations and policy for dengue. This study demonstrates the utility of Rt for real time dengue surveillance. Using nationally representative, geo-located dengue case data from Singapore over 2010-2020, we estimated Rt by modifying methods from Bayesian (EpiEstim) and filtering (EpiFilter) approaches, at both the national and local levels. We conducted model assessment of Rt from each proposed method and determined exogenous temporal and spatial drivers for Rt in relation to a wide range of environmental and anthropogenic factors. At the national level, both methods achieved satisfactory model performance (R2EpiEstim = 0.95, R2EpiFilter = 0.97), but disparities in performance were large at finer spatial scales when case counts are low (MASE EpiEstim = 1.23, MASEEpiFilter = 0.59). Impervious surfaces and vegetation with structure dominated by human management (without tree canopy) were positively associated with increased transmission intensity. Vegetation with structure dominated by human management (with tree canopy), on the other hand, was associated with lower dengue transmission intensity. We showed that dengue outbreaks were preceded by sustained periods of high transmissibility, demonstrating the potential of Rt as a dengue surveillance tool for detecting large rises in dengue cases. Real time estimation of Rt at the fine scale can assist public health agencies in identifying high transmission risk areas and facilitating localised outbreak preparedness and response.


Asunto(s)
Dengue/epidemiología , Vigilancia de la Población , Animales , Dengue/transmisión , Brotes de Enfermedades , Humanos , Mosquitos Vectores , Singapur/epidemiología
2.
BMC Infect Dis ; 23(1): 379, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280547

RESUMEN

BACKGROUND: A pertinent risk factor of upper respiratory tract infections (URTIs) and pneumonia is the exposure to major ambient air pollutants, with short term exposures to different air pollutants being shown to exacerbate several respiratory conditions. METHODS: Here, using disease surveillance data comprising of reported disease case counts at the province level, high frequency ambient air pollutant and climate data in Thailand, we delineated the association between ambient air pollution and URTI/Pneumonia burden in Thailand from 2000 - 2022. We developed mixed-data sampling methods and estimation strategies to account for the high frequency nature of ambient air pollutant concentration data. This was used to evaluate the effects past concentrations of fine particulate matter (PM2.5), sulphur dioxide (SO2), and carbon monoxide (CO) and the number of disease case count, after controlling for the confounding meteorological and disease factors. RESULTS: Across provinces, we found that past increases in CO, SO2, and PM2.5 concentration were associated to changes in URTI and pneumonia case counts, but the direction of their association mixed. The contributive burden of past ambient air pollutants on contemporaneous disease burden was also found to be larger than meteorological factors, and comparable to that of disease related factors. CONCLUSIONS: By developing a novel statistical methodology, we prevented subjective variable selection and discretization bias to detect associations, and provided a robust estimate on the effect of ambient air pollutants on URTI and pneumonia burden over a large spatial scale.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Neumonía , Infecciones del Sistema Respiratorio , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Ambientales/análisis , Tailandia/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Neumonía/epidemiología , Neumonía/etiología , Infecciones del Sistema Respiratorio/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
3.
PLoS Comput Biol ; 17(5): e1008959, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043622

RESUMEN

Mass gathering events have been identified as high-risk environments for community transmission of coronavirus disease 2019 (COVID-19). Empirical estimates of their direct and spill-over effects however remain challenging to identify. In this study, we propose the use of a novel synthetic control framework to obtain causal estimates for direct and spill-over impacts of these events. The Sabah state elections in Malaysia were used as an example for our proposed methodology and we investigate the event's spatial and temporal impacts on COVID-19 transmission. Results indicate an estimated (i) 70.0% of COVID-19 case counts within Sabah post-state election were attributable to the election's direct effect; (ii) 64.4% of COVID-19 cases in the rest of Malaysia post-state election were attributable to the election's spill-over effects. Sensitivity analysis was further conducted by examining epidemiological pre-trends, surveillance efforts, varying synthetic control matching characteristics and spill-over specifications. We demonstrate that our estimates are not due to pre-existing epidemiological trends, surveillance efforts, and/or preventive policies. These estimates highlight the potential of mass gatherings in one region to spill-over into an outbreak of national scale. Relaxations of mass gathering restrictions must therefore be carefully considered, even in the context of low community transmission and enforcement of safe distancing guidelines.


Asunto(s)
COVID-19/transmisión , Modelos Teóricos , Política , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Aglomeración , Brotes de Enfermedades , Humanos , Malasia/epidemiología , SARS-CoV-2/aislamiento & purificación
4.
Digit Health ; 9: 20552076231178418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312947

RESUMEN

Containment measures in high-risk closed settings, like migrant worker (MW) dormitories, are critical for mitigating emerging infectious disease outbreaks and protecting potentially vulnerable populations in outbreaks such as coronavirus disease 2019 (COVID-19). The direct impact of social distancing measures can be assessed through wearable contact tracing devices. Here, we developed an individual-based model using data collected through a Bluetooth wearable device that collected 33.6M and 52.8M contact events in two dormitories in Singapore, one apartment style and the other a barrack style, to assess the impact of measures to reduce the social contact of cases and their contacts. The simulation of highly detailed contact networks accounts for different infrastructural levels, including room, floor, block, and dormitory, and intensity in terms of being regular or transient. Via a branching process model, we then simulated outbreaks that matched the prevalence during the COVID-19 outbreak in the two dormitories and explored alternative scenarios for control. We found that strict isolation of all cases and quarantine of all contacts would lead to very low prevalence but that quarantining only regular contacts would lead to only marginally higher prevalence but substantially fewer total man-hours lost in quarantine. Reducing the density of contacts by 30% through the construction of additional dormitories was modelled to reduce the prevalence by 14 and 9% under smaller and larger outbreaks, respectively. Wearable contact tracing devices may be used not just for contact tracing efforts but also to inform alternative containment measures in high-risk closed settings.

5.
PLoS Negl Trop Dis ; 17(12): e0011763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150471

RESUMEN

BACKGROUND: Transmission intensity for mosquito-borne diseases are highly heterogenous and multi-factorial. Understanding risk factors associated to disease transmission allow the optimization of vector control. This study sets out to understand and compare the combined anthropogenic and environmental risk factors of four major mosquito-borne diseases, dengue, malaria, chikungunya and Japanese encephalitis in Thailand. METHODS: An integrated analysis of mosquito-borne diseases, meteorological and ambient air pollutants of 76 provinces of Thailand was conducted over 2003-2021. We explored the use of generalized linear models and generalized additive models to consider both linear and non-linear associations between meteorological factors, ambient air pollutants and mosquito-borne disease incidence. Different assumptions on spatio-temporal dependence and nonlinearity were considered through province-specific and panel models, as well as different spline functions. Disease-specific model evidence was assessed to select best-fit models for epidemiological inference downstream. RESULTS: Analyses indicated several findings which can be generally applied to all diseases explored: (1) higher AH above mean values was positively associated with disease case counts (2) higher total precipitation above mean values was positively associated with disease case counts (3) extremely high temperatures were negatively associated with disease case counts (4) higher SO2 and PM2.5 surface concentrations were negatively associated with disease case counts. However, the relationships between disease and RH, non-extreme temperatures and CO surface concentration were more mixed, with directions of associations changing across the different diseases considered. CONCLUSIONS: This study found protective and enhancing effects of meteorological and ambient air pollutant factors on mosquito-borne diseases burdens in Thailand. Further studies should employ these factors to understand and predict risk factors associated with mosquito-borne disease transmission.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Enfermedades Transmitidas por Mosquitos , Animales , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Ambientales/análisis , Tailandia/epidemiología , Temperatura
6.
Viruses ; 14(6)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35746601

RESUMEN

The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.


Asunto(s)
Aedes , Wolbachia , Aedes/microbiología , Animales , Femenino , Masculino , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Dinámica Poblacional
7.
Viruses ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36366548

RESUMEN

Dengue is a major vector-borne disease worldwide. Here, we examined the spatial distribution of extreme weekly dengue outbreak risk in Singapore from 2007 to 2020. We divided Singapore into equal-sized hexagons with a circumradius of 165 m and obtained the weekly number of dengue cases and the surface characteristics of each hexagon. We accounted for spatial heterogeneity using max-stable processes. The 5-, 10-, 20-, and 30-year return levels, or the weekly dengue case counts expected to be exceeded once every 5, 10, 20, and 30 years, respectively, were determined for each hexagon conditional on their surface characteristics remaining constant over time. The return levels were higher in the country's east, with the maximum weekly dengue cases per hexagon expected to exceed 51 at least once in 30 years in many areas. The surface characteristics with the largest impact on outbreak risk were the age of public apartments and the percentage of impervious surfaces, where a 3-year and 10% increase in each characteristic resulted in a 3.8% and 3.3% increase in risk, respectively. Vector control efforts should be prioritized in older residential estates and places with large contiguous masses of built-up environments. Our findings indicate the likely scale of outbreaks in the long term.


Asunto(s)
Dengue , Humanos , Anciano , Dengue/epidemiología , Singapur/epidemiología , Brotes de Enfermedades
8.
Nutrients ; 13(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916184

RESUMEN

Globally, many countries are facing an increasing burden of chronic disease due to ageing populations, of which cardiovascular disease forms a large proportion. Excess dietary sodium contributes to cardiovascular disease risk and requires intervention at a population level. This study aimed to quantify the impact of several salt reduction initiatives on population health over a 30-year horizon using GeoDEMOS, a population model from Singapore. Four interventions were modelled in four demographic groups in 2020 for a total of 16 intervention scenarios. The effect of 0.5, 2.0, and 4.0 g/day reductions in daily salt consumption, along with adherence to the World Health Organization guidelines of a maximum of 5.0 g of salt each day, was modelled in the entire population, including the overweight and obese, the elderly, and diabetics. In each scenario, the number of averted incident cases of acute myocardial infarction and stroke, along with the disability-adjusted life years up to 2050, was monitored. We found 4.0 g/day reductions in salt consumption were the most effective when implemented across the entire population, resulting in 24,000 averted incident cases of cardiovascular disease and 215,000 disability-adjusted life years over 30 years. This is a large figure when compared with the 29,200 projected annual incident cases of cardiovascular disease in 2050. When targeted at specific high-risk demographic groups, the largest effects were observed in the overweight and obese, with the same intervention yielding 10,500 averted incident cases of cardiovascular disease and 91,500 disability-adjusted life years. Quantifying the benefits of salt reduction initiatives revealed a significant impact when administered across the entire population or the overweight and obese. Health promotion efforts directed toward sustainably reducing salt consumption will help to lower the chronic disease burden on the healthcare system in years to come.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Costo de Enfermedad , Promoción de la Salud/métodos , Cloruro de Sodio Dietético/administración & dosificación , Enfermedad Crónica , Dieta , Dieta Hiposódica , Análisis de los Alimentos , Humanos , Modelos Biológicos , Factores de Riesgo , Singapur
9.
J R Soc Interface ; 18(182): 20210565, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520691

RESUMEN

Over 105 million dengue infections are estimated to occur annually. Understanding the disease dynamics of dengue is often difficult due to multiple strains circulating within a population. Interactions between dengue serotype dynamics may result in complex cross-immunity dynamics at the population level and create difficulties in terms of formulating intervention strategies for the disease. In this study, a nationally representative 16-year time series with over 43 000 serotyped dengue infections was used to infer the long-run effects of between and within strain interactions and their impacts on past outbreaks. We used a novel identification strategy incorporating sign-identified Bayesian vector autoregressions, using structural impulse responses, historical decompositions and counterfactual analysis to conduct inference on dengue dynamics post-estimation. We found that on the population level: (i) across-serotype interactions on the population level were highly persistent, with a one time increase in any other serotype associated with long run decreases in the serotype of interest (range: 0.5-2.5 years) and (ii) over 38.7% of dengue cases of any serotype were associated with across-serotype interactions. The findings in this paper will substantially impact public health policy interventions with respect to dengue.


Asunto(s)
Virus del Dengue , Dengue , Teorema de Bayes , Dengue/epidemiología , Brotes de Enfermedades , Humanos , Serogrupo
10.
PLOS Glob Public Health ; 1(10): e0000024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36962069

RESUMEN

The release of Wolbachia-infected mosquitoes is a promising disease intervention strategy that aims to control dengue and other arboviral infections. While early field trials and modelling studies suggest promising epidemiological and entomological outcomes, the overall cost effectiveness of the technology is not well studied in a resource rich setting nor under the suppression approach that aims to suppress the wild-type mosquito population through the release of Wolbachia-infected males. We used economical and epidemiological data from 2010 to 2020 to first ascertain the economic and health costs of dengue in Singapore, a high income nation where dengue is hyper-endemic. The hypothetical cost effectiveness of a national Wolbachia suppression program was then evaluated historically from 2010 to 2020. We estimated that the average economic impact of dengue in Singapore from 2010 to 2020 in constant 2010US$ ranged from $1.014 to $2.265 Billion. Using empirically derived disability weights, we estimated a disease burden of 7,645-21,262 DALYs from 2010-2020. Under an assumed steady-state running cost of a national Wolbachia suppression program in Singapore, we conservatively estimate that Wolbachia would cost an estimated $50,453-$100,907 per DALYs averted and would lead to an estimated $329.40 Million saved in economic costs over 2010 to 2020 under 40% intervention efficacy. Wolbachia releases in Singapore are expected to be highly cost-effective and its rollout must be prioritised to reduce the onward spread of dengue.

11.
PLoS Negl Trop Dis ; 14(10): e0008719, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33119609

RESUMEN

An estimated 105 million dengue infections occur per year across 120 countries, where traditional vector control is the primary control strategy to reduce contact between mosquito vectors and people. The ongoing sars-cov-2 pandemic has resulted in dramatic reductions in human mobility due to social distancing measures; the effects on vector-borne illnesses are not known. Here we examine the pre and post differences of dengue case counts in Malaysia, Singapore and Thailand, and estimate the effects of social distancing as a treatment effect whilst adjusting for temporal confounders. We found that social distancing is expected to lead to 4.32 additional cases per 100,000 individuals in Thailand per month, which equates to 170 more cases per month in the Bangkok province (95% CI: 100-242) and 2008 cases in the country as a whole (95% CI: 1170-2846). Social distancing policy estimates for Thailand were also found to be robust to model misspecification, and variable addition and omission. Conversely, no significant impact on dengue transmission was found in Singapore or Malaysia. Across country disparities in social distancing policy effects on reported dengue cases are reasoned to be driven by differences in workplace-residence structure, with an increase in transmission risk of arboviruses from social distancing primarily through heightened exposure to vectors in elevated time spent at residences, demonstrating the need to understand the effects of location on dengue transmission risk under novel population mixing conditions such as those under social distancing policies.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Infecciones por Coronavirus/epidemiología , Dengue/transmisión , Neumonía Viral/epidemiología , Animales , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/prevención & control , Dengue/epidemiología , Humanos , Malasia/epidemiología , Mosquitos Vectores , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2 , Singapur/epidemiología , Aislamiento Social , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA