Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Genet ; 46(10): 680-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19625284

RESUMEN

BACKGROUND: Autism spectrum disorders (ASDs) are common, heritable neurobiologic conditions of unknown aetiology confounded by significant clinical and genetic heterogeneity. METHODS: This study evaluated a broad categorisation of phenotypic traits (or phenome) for 100 subjects with Autism Diagnostic Interview-Revised/Autism Diagnostic Observation Schedule-Generic (ADI-R/ADOS-G) confirmed idiopathic ASD undergoing 1 Mb bacterial artificial chromosome (BAC) array comparative genomic hybridisation (CGH). RESULTS AND CONCLUSIONS: Array CGH uncovered nine different pathogenic copy number variants (pCNVs) in 9/100 ASD subjects having complex phenotypes (ASD+/- intellectual disability (ID; IQ<70)) and/or physical anomalies), normal karyotype, fragile X analysis, and comprehensive evaluation by a clinical geneticist. Unique pCNVs in our cohort included del(5)(p15.2p15.31) (2.4 Mb), del(3)(p24.3) (0.1 Mb) and dup(18)(p11.3)(0.9 Mb). Five pCNVs were recurrent in our cohort or were previously described in subjects with ASD+/-ID: (dup(7)(q11.23)(1.5 Mb); del(2)(p15p16.1) (6.1 Mb and 7.9 Mb); del(14)(q11.2) (0.7 Mb) and dup(15)(q11q13) (10 Mb), including del(X)(p11.22) (470 Kb) in two autistic brothers. Male: female distribution in subjects with pCNVs was reduced to 1.25:1 from 3.2:1 in the original cohort. The authors stratified the study population according to a broad spectrum of clinical features and correlated specific phenotypes with respect to CNV load and pathogenicity. The findings indicate increased prevalence of pCNVs in subjects with microcephaly (<2nd centile; n = 2 of 4 ASD subjects with microcephaly; p = 0.04), and ID (n = 9 of 64 subjects with ASD and ID; p = 0.02). Interestingly, in the absence of ID co-morbidity with an ASD, no pCNVs were found. The relationship between parental ages at delivery and CNV load and pathogenicity was also explored.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Variación Genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Dosificación de Gen , Genotipo , Humanos , Masculino , Fenotipo
3.
Clin Genet ; 69(2): 124-34, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16433693

RESUMEN

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic aetiology. In approximately 1% of cases, duplication of the 15q11-13 region has been reported. We report the clinical, array-comparative genomic hybridization (CGH) and cytogenetic evaluation of two individuals from a multiplex family demonstrating autism due to a maternally inherited gain of 15q11-13. Our findings indicate that unlike most 15q11-13 gains, which are caused by interstitial duplication of this region or supernumerary marker chromosomes deriving from proximal 15q, the 15q gain in this family is the result of abnormal segregation of a cryptic familial translocation with breakpoints at 14q11.2 and 15q13.3. The affected members of this family were found to have a normal karyotype at >550 band resolution. This translocation was identified using the 1-Mb resolution whole genome array (Spectral Genomics). The affected individuals have a gain of seven clones from proximal 15q, a loss of two clones from proximal 14q and a gain of two clones from 6q. Fluorescent in situ hybridization (FISH) analysis with clones from chromosomes 14 and 15, combined with DAPI reverse banding, showed an abnormal karyotype with one normal chromosome 15 and the der(15) t(14;15)(q11.2.;q13.3), resulting in the gain of proximal 15q and the loss of proximal 14q in affected individuals. The duplication of two clones from 6q in the affected subjects was also found in unaffected members of the family. Our findings suggest that the gain of 15q in autism may in some cases be due to cryptic translocations with breakpoints in the pericentromic regions of chromosome 15 and a different acrocentric chromosome. Variation in the size of pericentromic regions of any acrocentric chromosome may justify karyotype and FISH studies of autistic probands and their parents using probes from the 15q proximal region to determine recurrence risk for autism in some families.


Asunto(s)
Trastorno Autístico/genética , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 15/genética , Duplicación de Gen , Translocación Genética/genética , Adolescente , Adulto , Niño , Bandeo Cromosómico , Salud de la Familia , Femenino , Genoma Humano , Genómica , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Masculino , Hibridación de Ácido Nucleico , Linaje
4.
Clin Genet ; 67(4): 341-51, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15733271

RESUMEN

Cri du Chat syndrome (CdCs) is a well-defined clinical entity, with an incidence of 1/15,000 to 1/50,000. The critical region for CdCs has been mapped to 5p15, with the hallmark cat-like cry sublocalized to 5p15.3 and the remaining clinical features to 5p15.2. We report findings in a subject with a de novo t(5;7)(p15.2;p12.2) and an inv(3)(p24q24), who was found to have a cryptic microdeletion in the critical region for CdCs detected using a 1-Mb genomic microarray. In addition to 5p deletion, the proband had a de novo single clone loss at the 3p breakpoint of inv(3)(p24q24) and a familial single clone deletion at 18q12. Deletions were confirmed using microsatellite analysis and fluorescence in situ hybridization. The 5p deletion encompasses approximately 3 Mb, mapping to the border between bands 5p15.2 and 5p15.31. The single clone deletion on chromosome 3 maps to 3p24.3-3p25, for which there is no known phenotype. The clinical features of our proband differ from the characteristic CdC phenotype, which may reflect the combined effect of the two de novo microdeletions and/or may further refine the critical region for CdCs. Typical features of CdCs that are present in the proband include moderate intellectual disability, speech, and motor delay as well as dysmorphic features (e.g. broad and high nasal root, hypertelorism, and coarse facies). Expected CdCs features that are not present are growth delay, microcephaly, round facies, micrognathia, epicanthal folds, and the signature high-pitched cry. Behavioral traits in this subject included autism spectrum disorder, attention-deficit hyperactivity disorder, and unmanageable behavior including aggression, tantrums, irritability, and self-destructive behavior. Several of these behaviors have been previously reported in patients with 5p deletion syndrome. Although most agree on the cat-cry critical region (5p15.3), there is discrepancy in the precise location and size of the region associated with the more severe manifestations of CdCs. The clinical description of this proband and the characterization of his 5p deletion may help to further refine the phenotype-genotype associations in CdCs and autism spectrum disorder.


Asunto(s)
Trastorno Autístico/genética , Deleción Cromosómica , Síndrome del Maullido del Gato/genética , Adolescente , Trastorno Autístico/complicaciones , Niño , Preescolar , Bandeo Cromosómico , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 5/genética , Síndrome del Maullido del Gato/complicaciones , Femenino , Genotipo , Humanos , Hibridación Fluorescente in Situ , Masculino , Repeticiones de Microsatélite/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA