Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(3): 198-209, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38123948

RESUMEN

Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.


Asunto(s)
Industria Farmacéutica , Sistemas Microfisiológicos , Animales , Humanos , Descubrimiento de Drogas
2.
Blood ; 137(18): 2520-2531, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33569603

RESUMEN

Intravascular fibrin clot formation follows a well-ordered series of reactions catalyzed by thrombin cleavage of fibrinogen leading to fibrin polymerization and cross-linking by factor XIIIa (FXIIIa). Extravascular fibrin(ogen) deposits are observed in injured tissues; however, the mechanisms regulating fibrin(ogen) polymerization and cross-linking in this setting are unclear. The objective of this study was to determine the mechanisms of fibrin polymerization and cross-linking in acute liver injury induced by acetaminophen (APAP) overdose. Hepatic fibrin(ogen) deposition and cross-linking were measured following APAP overdose in wild-type mice, mice lacking the catalytic subunit of FXIII (FXIII-/-), and in FibAEK mice, which express mutant fibrinogen insensitive to thrombin-mediated fibrin polymer formation. Hepatic fibrin(ogen) deposition was similar in APAP-challenged wild-type and FXIII-/- mice, yet cross-linking of hepatic fibrin(ogen) was dramatically reduced (>90%) by FXIII deficiency. Surprisingly, hepatic fibrin(ogen) deposition and cross-linking were only modestly reduced in APAP-challenged FibAEK mice, suggesting that in the APAP-injured liver fibrin polymerization is not strictly required for the extravascular deposition of cross-linked fibrin(ogen). We hypothesized that the oxidative environment in the injured liver, containing high levels of reactive mediators (eg, peroxynitrite), modifies fibrin(ogen) such that fibrin polymerization is impaired without impacting FXIII-mediated cross-linking. Notably, fibrin(ogen) modified with 3-nitrotyrosine adducts was identified in the APAP-injured liver. In biochemical assays, peroxynitrite inhibited thrombin-mediated fibrin polymerization in a concentration-dependent manner without affecting fibrin(ogen) cross-linking over time. These studies depict a unique pathology wherein thrombin-catalyzed fibrin polymerization is circumvented to allow tissue deposition and FXIII-dependent fibrin(ogen) cross-linking.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Factor XIII/fisiología , Fibrina/metabolismo , Fibrinógeno/metabolismo , Polimerizacion , Trombina/metabolismo , Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Animales , Coagulación Sanguínea , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fibrina/química , Fibrinógeno/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Blood ; 135(19): 1704-1717, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315384

RESUMEN

Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fibrinolisina/metabolismo , Obesidad/patología , Trombina/metabolismo , Trombomodulina/metabolismo , Trombosis/patología , Animales , Ratones , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Trombosis/etiología , Trombosis/metabolismo
4.
Blood ; 133(11): 1245-1256, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30655274

RESUMEN

Platelets play a pivotal role in stimulating liver regeneration after partial hepatectomy in rodents and humans. Liver regeneration in rodents is delayed when platelets are inhibited. However, the exact mechanisms whereby platelets accumulate and promote liver regeneration remain uncertain. Thrombin-dependent intrahepatic fibrin(ogen) deposition was recently reported after partial hepatectomy (PHx) in mice, but the role of fibrin(ogen) deposits in liver regeneration has not been investigated. We tested the hypothesis that fibrin(ogen) contributes to liver regeneration by promoting intrahepatic platelet accumulation and identified the trigger of rapid intrahepatic coagulation after PHx. PHx in wild-type mice triggered rapid intrahepatic coagulation, evidenced by intrahepatic fibrin(ogen) deposition. Intrahepatic fibrin(ogen) deposition was abolished in mice with liver-specific tissue factor deficiency, pinpointing the trigger of coagulation after PHx. Direct thrombin activation of platelets through protease-activated receptor-4 did not contribute to hepatocyte proliferation after PHx, indicating that thrombin contributes to liver regeneration primarily by driving intrahepatic fibrin(ogen) deposition. Fibrinogen depletion with ancrod reduced both intrahepatic platelet accumulation and hepatocyte proliferation after PHx, indicating that fibrin(ogen) contributes to liver regeneration after PHx by promoting intrahepatic platelet accumulation. Consistent with the protective function of fibrin(ogen) in mice, low postoperative plasma fibrinogen levels were associated with liver dysfunction and mortality in patients undergoing liver resection. Moreover, increased intrahepatic fibrin(ogen) deposition was evident in livers of patients after liver resection but was remarkably absent in patients displaying hepatic dysfunction postresection. The results suggest a novel mechanism whereby coagulation-dependent intrahepatic fibrin(ogen) deposition drives platelet accumulation and liver regeneration after PHx.


Asunto(s)
Coagulación Sanguínea , Fibrinógeno/metabolismo , Hepatectomía/métodos , Hepatopatías/cirugía , Regeneración Hepática , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Activación Plaquetaria , Pronóstico , Estudios Prospectivos , Receptores de Trombina/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 39(10): 2038-2048, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31412737

RESUMEN

OBJECTIVE: Regulation of TF (tissue factor):FVIIa (coagulation factor VIIa) complex procoagulant activity is especially critical in tissues where plasma can contact TF-expressing cells. One example is the liver, where hepatocytes are routinely exposed to plasma because of the fenestrated sinusoidal endothelium. Although liver-associated TF contributes to coagulation, the mechanisms controlling the TF:FVIIa complex activity in this tissue are not known. Approach and Results: Common bile duct ligation in mice triggered rapid hepatocyte TF-dependent intrahepatic coagulation coincident with increased plasma bile acids, which occurred at a time before observable liver damage. Similarly, plasma TAT (thrombin-antithrombin) levels increased in cholestatic patients without concurrent hepatocellular injury. Pathologically relevant concentrations of the bile acid glycochenodeoxycholic acid rapidly increased hepatocyte TF-dependent procoagulant activity in vitro, independent of de novo TF synthesis and necrotic or apoptotic cell death. Glycochenodeoxycholic acid increased hepatocyte TF activity even in the presence of the phosphatidylserine-blocking protein lactadherin. Interestingly, glycochenodeoxycholic acid and taurochenodeoxycholic acid increased the procoagulant activity of the TF:FVIIa complex relipidated in unilamellar phosphatidylcholine vesicles, which was linked to an apparent decrease in the Km for FX (coagulation factor X). Notably, the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, a bile acid structural analog, did not increase relipidated TF:FVIIa activity. Bile acids directly enhanced factor X activation by recombinant soluble TF:FVIIa complex but had no effect on FVIIa alone. CONCLUSIONS: The results indicate that bile acids directly accelerate TF:FVIIa-driven coagulation reactions, suggesting a novel mechanism whereby elevation in a physiological mediator can directly increase TF:FVIIa procoagulant activity.


Asunto(s)
Conductos Biliares/cirugía , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/fisiopatología , Factor VIIa/metabolismo , Factor X/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Coagulación Sanguínea/fisiología , Trastornos de la Coagulación Sanguínea/fisiopatología , Pruebas de Coagulación Sanguínea , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Cinética , Ligadura/métodos , Ratones , Ratones Endogámicos C57BL , Fosfatidilserinas/metabolismo , Distribución Aleatoria
6.
Toxicol Pathol ; 48(8): 994-1007, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33252024

RESUMEN

Fatty liver disease is a potential risk factor for drug-induced liver injury (DILI). Despite advances in nonclinical in vitro and in vivo models to assess liver injury during drug development, the pharmaceutical industry is still plagued by idiosyncratic DILI. Here, we tested the hypothesis that certain features of asymptomatic metabolic syndrome (namely hepatic steatosis) increase the risk for DILI in certain phenotypes of the human population. Comparison of the Zucker Lean (ZL) and Zucker Fatty rats fed a high fat diet (HFD) revealed that HFD-fed ZL rats developed mild hepatic steatosis with compensatory hyperinsulinemia without increases in liver enzymes. We then challenged steatotic HFD-fed ZL rats and Sprague-Dawley (SD) rats fed normal chow, a nonclinical model widely used in the pharmaceutical industry, with acetaminophen overdose to induce liver injury. Observations in HFD-fed ZL rats included increased liver injury enzymes and greater incidence and severity of hepatic necrosis compared with similarly treated SD rats. The HFD-fed ZL rats also had disproportionately higher hepatic drug accumulation, which was linked with abnormal hepatocellular efflux transporter distribution. Here, we identify ZL rats with HFD-induced hepatic steatosis as a more sensitive nonclinical in vivo test system for modeling DILI compared with SD rats fed normal chow.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado Graso , Síndrome Metabólico , Animales , Dieta Alta en Grasa/efectos adversos , Hígado Graso/inducido químicamente , Humanos , Hígado , Síndrome Metabólico/inducido químicamente , Ratas , Ratas Sprague-Dawley , Ratas Zucker
7.
Am J Pathol ; 188(5): 1204-1212, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454747

RESUMEN

Acetaminophen (APAP)-induced liver injury in mice is associated with activation of the coagulation cascade and deposition of fibrin in liver. Plasminogen activator inhibitor-1 (PAI-1) is an important physiological inhibitor of tissue-type plasminogen activator (tPA) and plays a critical role in fibrinolysis. PAI-1 expression is increased in both experimental APAP-induced liver injury and patients with acute liver failure. Prior studies have shown that PAI-1 prevents intrahepatic hemorrhage and mortality after APAP challenge, but the downstream mechanisms are not clear. We tested the hypothesis that PAI-1 limits liver-related morbidity after APAP challenge by reducing tPA-dependent fibrinolysis. Compared with APAP-challenged (300 mg/kg) wild-type mice, hepatic deposition of cross-linked fibrin was reduced, with intrahepatic congestion and hemorrhage increased in PAI-1-deficient mice 24 hours after APAP overdose. Administration of recombinant wild-type human PAI-1 reduced intrahepatic hemorrhage 24 hours after APAP challenge in PAI-1-/- mice, whereas a mutant PAI-1 lacking antiprotease function had no effect. Of interest, tPA deficiency alone did not affect APAP-induced liver damage. In contrast, fibrinolysis, intrahepatic congestion and hemorrhage, and mortality driven by PAI-1 deficiency were reduced in APAP-treated tPA-/-/PAI-1-/- double-knockout mice. The results identify PAI-1 as a critical regulator of intrahepatic fibrinolysis in experimental liver injury. Moreover, the results suggest that the balance between PAI-1 and tPA activity is an important determinant of liver pathology after APAP overdose.


Asunto(s)
Acetaminofén/envenenamiento , Sobredosis de Droga/metabolismo , Fibrinólisis/efectos de los fármacos , Hemorragia/metabolismo , Hepatopatías/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Animales , Sobredosis de Droga/complicaciones , Sobredosis de Droga/genética , Hemorragia/complicaciones , Hemorragia/genética , Hepatopatías/complicaciones , Hepatopatías/genética , Ratones , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/genética , Activador de Tejido Plasminógeno/genética
8.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G171-G176, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723040

RESUMEN

Liver is the primary source of numerous proteins that are critical for normal function of the blood coagulation cascade. Because of this, diseases of the liver, particularly when affiliated with severe complications like cirrhosis, are associated with abnormalities of blood clotting. Although conventional interpretation has inferred cirrhosis as a disorder of uniform bleeding risk, it is now increasingly appreciated as a disease wherein the coagulation cascade is precariously rebalanced. Moreover, prothrombotic risk factors are also associated with a more rapid progression of fibrosis in humans, suggesting that coagulation proteases participate in disease pathogenesis. Indeed, strong evidence drawn from experimental animal studies indicates that components of the coagulation cascade, particularly coagulation factor Xa and thrombin, drive profibrogenic events, leading to hepatic fibrosis. Here, we concisely review the evidence supporting a pathologic role for coagulation in the development of liver fibrosis and the potential mechanisms involved. Further, we highlight how studies in experimental animals may shed light on emerging clinical evidence, suggesting that beneficial effects of anticoagulation could extend beyond preventing thrombotic complications to include reducing pathologies like fibrosis.


Asunto(s)
Factores de Coagulación Sanguínea/metabolismo , Coagulación Sanguínea/fisiología , Cirrosis Hepática/sangre , Animales , Humanos
9.
Blood ; 127(22): 2751-62, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26921287

RESUMEN

Coagulation cascade activation and fibrin deposits have been implicated or observed in diverse forms of liver damage. Given that fibrin amplifies pathological inflammation in several diseases through the integrin receptor αMß2, we tested the hypothesis that disruption of the fibrin(ogen)-αMß2 interaction in Fibγ(390-396A) mice would reduce hepatic inflammation and fibrosis in an experimental setting of chemical liver injury. Contrary to our hypothesis, α-naphthylisothiocyanate (ANIT)-induced liver fibrosis increased in Fibγ(390-396A) mice, whereas inflammatory cytokine expression and hepatic necrosis were similar to ANIT-challenged wild-type (WT) mice. Increased fibrosis in Fibγ(390-396A) mice appeared to be independent of coagulation factor 13 (FXIII) transglutaminase, as ANIT challenge in FXIII-deficient mice resulted in a distinct pathological phenotype characterized by increased hepatic necrosis. Rather, bile duct proliferation underpinned the increased fibrosis in ANIT-exposed Fibγ(390-396A) mice. The mechanism of fibrin-mediated fibrosis was linked to interferon (IFN)γ induction of inducible nitric oxide synthase (iNOS), a gene linked to bile duct hyperplasia and liver fibrosis. Expression of iNOS messenger RNA was significantly increased in livers of ANIT-exposed Fibγ(390-396A) mice. Fibrin(ogen)-αMß2 interaction inhibited iNOS induction in macrophages stimulated with IFNγ in vitro and ANIT-challenged IFNγ-deficient mice had reduced iNOS induction, bile duct hyperplasia, and liver fibrosis. Further, ANIT-induced iNOS expression, liver fibrosis, and bile duct hyperplasia were significantly reduced in WT mice administered leukadherin-1, a small molecule that allosterically enhances αMß2-dependent cell adhesion to fibrin. These studies characterize a novel mechanism whereby the fibrin(ogen)-integrin-αMß2 interaction reduces biliary fibrosis and suggests a novel putative therapeutic target for this difficult-to-treat fibrotic disease.


Asunto(s)
1-Naftilisotiocianato/toxicidad , Conductos Biliares/metabolismo , Fibrina/metabolismo , Cirrosis Hepática Biliar/metabolismo , Antígeno de Macrófago-1/metabolismo , Animales , Benzoatos/farmacología , Conductos Biliares/patología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Femenino , Fibrina/genética , Humanos , Hiperplasia , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Cirrosis Hepática Biliar/inducido químicamente , Cirrosis Hepática Biliar/genética , Antígeno de Macrófago-1/genética , Masculino , Ratones , Ratones Noqueados , Necrosis , Tiohidantoínas/farmacología
10.
J Hepatol ; 66(4): 787-797, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27965156

RESUMEN

BACKGROUND & AIMS: Acetaminophen (APAP)-induced liver injury is coupled with activation of the blood coagulation cascade and fibrin(ogen) accumulation within APAP-injured livers of experimental mice. We sought to define the role of fibrin(ogen) deposition in APAP-induced liver injury and repair. METHODS: Wild-type, fibrinogen-deficient mice, mutant mice with fibrin(ogen) incapable of binding leukocyte αMß2 integrin (Fibγ390-396A mice) and matrix metalloproteinase 12 (Mmp12)-deficient mice were fasted, injected with 300mg/kg APAP i.p. and evaluated at a range of time-points. Plasma and liver tissue were analyzed. Rescue of Fibγ390-396A mice was carried out with exogenous Mmp12. To examine the effect of the allosteric leukocyte integrin αMß2 activator leukadherin-1 (LA-1), APAP-treated mice were injected with LA-1. RESULTS: In wild-type mice, APAP overdose increased intrahepatic levels of high molecular weight cross-linked fibrin(ogen). Anticoagulation reduced early APAP hepatotoxicity (6h), but increased hepatic injury at 24h, implying a protective role for coagulation at the onset of repair. Complete fibrin(ogen) deficiency delayed liver repair after APAP overdose, evidenced by a reduction of proliferating hepatocytes (24h) and unresolved hepatocellular necrosis (48 and 72h). Fibγ390-396A mice had decreased hepatocyte proliferation and increased multiple indices of liver injury, suggesting a mechanism related to fibrin(ogen)-leukocyte interaction. Induction of Mmp12, was dramatically reduced in APAP-treated Fibγ390-396A mice. Mice lacking Mmp12 displayed exacerbated APAP-induced liver injury, resembling Fibγ390-396A mice. In contrast, administration of LA-1 enhanced hepatic Mmp12 mRNA and reduced necrosis in APAP-treated mice. Further, administration of recombinant Mmp12 protein to APAP-treated Fibγ390-396A mice restored hepatocyte proliferation. CONCLUSIONS: These studies highlight a novel pathway of liver repair after APAP overdose, mediated by fibrin(ogen)-αMß2 integrin engagement, and demonstrate a protective role of Mmp12 expression after APAP overdose. LAY SUMMARY: Acetaminophen overdose leads to activation of coagulation cascade and deposition of high molecular weight cross-linked fibrin(ogen) species in the liver. Fibrin(ogen) is required for stimulating liver repair after acetaminophen overdose. The mechanism whereby fibrin(ogen) drives liver repair after acetaminophen overdose requires engagement of leukocyte αMß2 integrin and subsequent induction of matrix metalloproteinase 12.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fibrina/metabolismo , Fibrinógeno/metabolismo , Antígeno de Macrófago-1/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Acetaminofén/toxicidad , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animales , Antitrombinas/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Dabigatrán/farmacología , Femenino , Fibrina/deficiencia , Fibrina/genética , Fibrinógeno/genética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 12 de la Matriz/deficiencia , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes
11.
Toxicol Appl Pharmacol ; 328: 54-59, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28527913

RESUMEN

Liver diseases are associated with complex changes in the hemostatic system and elevated levels of the platelet-adhesive protein Von Willebrand factor (VWF) are reported in patients with acute and chronic liver damage. Although elevated levels of VWF are associated with fibrosis in the general population, the role of VWF in acute and chronic liver injury has not been examined in depth in experimental settings. We tested the hypothesis that VWF deficiency inhibits experimental liver injury and fibrosis. Wild-type (WT) and VWF-deficient mice were challenged with carbon tetrachloride (CCl4) and the impact of VWF deficiency on acute liver injury and chronic liver fibrosis was determined. VWF deficiency did not significantly affect acute CCl4-induced hepatocellular necrosis in mice. Chronic CCl4 challenge, twice weekly for 6weeks, significantly increased hepatic stellate cell activation and collagen deposition in livers of WT mice. Interestingly, hepatic induction of several profibrogenic and stellate cell activation genes was attenuated in VWF-deficient mice. Moreover, birefringent sirius red staining (indicating type I and III collagens) and type I collagen immunofluorescence indicated a reduction in hepatic collagen deposition in CCl4-exposed VWF-deficient mice compared to CCl4-exposed WT mice. The results indicate that VWF deficiency attenuates chronic CCl4-induced liver fibrosis without affecting acute hepatocellular necrosis. The results are the first to demonstrate that VWF deficiency reduces the progression of liver fibrosis, suggesting a mechanistic role of elevated plasma VWF levels in cirrhosis.


Asunto(s)
Cirrosis Hepática/patología , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Actinas/metabolismo , Animales , Intoxicación por Tetracloruro de Carbono/patología , Enfermedad Crónica , Colágeno Tipo I/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
J Biochem Mol Toxicol ; 31(1): 1-7, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27605088

RESUMEN

Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice.


Asunto(s)
1-Naftilisotiocianato/toxicidad , Conductos Biliares Intrahepáticos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cirrosis Hepática Biliar/metabolismo , Hígado/metabolismo , Animales , Conductos Biliares Intrahepáticos/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hígado/patología , Cirrosis Hepática Biliar/inducido químicamente , Cirrosis Hepática Biliar/patología , Masculino , Ratones , Necrosis
13.
J Hepatol ; 64(1): 53-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26325534

RESUMEN

BACKGROUND & AIMS: Patients with chronic liver disease and cirrhosis have a dysregulated coagulation system and are prone to thrombosis. The basis for this hypercoagulable state is not completely understood. Tissue factor (TF) is the primary initiator of coagulation in vivo. Patients with cirrhosis have increased TF activity in white blood cells and circulating microparticles. The aim of our study was to determine the contribution of TF to the hypercoagulable state in a mouse model of chronic liver injury. METHODS: We measured levels of TF activity in the liver, white blood cells and circulating microparticles, and a marker of activation of coagulation (thrombin-antithrombin complexes (TATc)) in the plasma of mice subjected to bile duct ligation for 12days. We used wild-type mice, mice with a global TF deficiency (low TF mice), and mice deficient for TF in either myeloid cells (TF(flox/flox),LysMCre mice) or in hepatocytes (TF(flox/flox),AlbCre). RESULTS: Wild-type mice with liver injury had increased levels of white blood cell, microparticle TF activity and TATc compared to sham mice. Low TF mice and mice lacking TF in hepatocytes had reduced levels of TF in the liver and in microparticles and exhibited reduced activation of coagulation without a change in liver fibrosis. In contrast, mice lacking TF in myeloid cells had reduced white blood cell TF but no change in microparticle TF activity or TATc. CONCLUSIONS: Hepatocyte TF activates coagulation in a mouse model of chronic liver injury. TF may contribute to the hypercoagulable state associated with chronic liver diseases in patients.


Asunto(s)
Hepatocitos/fisiología , Hepatopatías/sangre , Trombofilia/etiología , Tromboplastina/fisiología , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Semin Thromb Hemost ; 42(4): 397-407, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27144445

RESUMEN

Strong experimental evidence indicates that components of the hemostatic system, including thrombin, exacerbate diverse features of experimental liver disease. Clinical studies have also begun to address this connection and some studies have suggested that anticoagulants can improve outcome in patients with liver disease. Among the evidence of coagulation cascade activation in models of liver injury and disease is the frequent observation of thrombin-driven hepatic fibrin(ogen) deposition. Indeed, hepatic fibrin(ogen) deposition has long been recognized as a consequence of hepatic injury. Although commonly inferred as pathologic due to protective effects of anticoagulants in mouse models, the role of fibrin(ogen) in acute liver injury and chronic liver disease may not be universally detrimental. The localization of hepatic fibrin(ogen) deposits within the liver is connected to the disease stimulus and in animal models of liver toxicity and chronic disease, fibrin(ogen) deposition may not always be synonymous with large vessel thrombosis. Here, we provide a balanced review of the experimental evidence supporting a direct connection between fibrin(ogen) and liver injury/disease pathogenesis, and suggest a path forward bridging experimental and clinical research to improve our knowledge on the nature and function of fibrin(ogen) in liver disease.


Asunto(s)
Fibrina/metabolismo , Fibrinógeno/metabolismo , Hepatopatías/metabolismo , Enfermedad Aguda , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Ratones
15.
Blood ; 121(10): 1868-74, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23305736

RESUMEN

In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TF(flox/flox)/albumin-Cre mice (HPC(ΔTF) mice) compared with TF(flox/flox) mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPC(ΔTF) mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury.


Asunto(s)
Coagulación Sanguínea/fisiología , Factor VIIa/metabolismo , Hepatocitos/metabolismo , Trombina/metabolismo , Tromboplastina/fisiología , Acetaminofén/toxicidad , Albúminas/genética , Analgésicos no Narcóticos/toxicidad , Animales , Western Blotting , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Factor VIIa/genética , Femenino , Citometría de Flujo , Hepatocitos/citología , Hepatocitos/trasplante , Humanos , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Pharmacol Exp Ther ; 349(3): 383-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24633426

RESUMEN

Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.


Asunto(s)
Antifibrinolíticos/uso terapéutico , Enfermedades de los Conductos Biliares/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , Ácido Tranexámico/uso terapéutico , 1-Naftilisotiocianato/farmacología , Animales , Antifibrinolíticos/administración & dosificación , Enfermedades de los Conductos Biliares/inducido químicamente , Enfermedades de los Conductos Biliares/metabolismo , Enfermedades de los Conductos Biliares/patología , Colágeno Tipo I/biosíntesis , Modelos Animales de Enfermedad , Fibrina/metabolismo , Fibrinógeno/genética , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/genética , Ácido Tranexámico/administración & dosificación
17.
J Pharmacol Exp Ther ; 351(2): 288-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25138021

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome. Robust coagulation cascade activation is common in obese patients with NAFLD. We identified a critical temporal relationship between thrombin generation and the manifestation of hepatic steatosis, inflammation, and injury in C57BL/6J mice fed a high-fat diet (HFD) for 1, 2, and 3 months. Mice fed a HFD exhibited dramatic increases in hepatocellular injury and inflammation over time. Hepatic fibrin deposition preceded an increase in serum alanine aminotransferase, and the most dramatic changes in liver histopathology occurred in conjunction with a detectable increase in plasma thrombin-antithrombin levels at 3 months. To directly determine whether thrombin activity promotes NAFLD pathogenesis, mice were fed a HFD and simultaneously treated with the direct thrombin inhibitor dabigatran etexilate for 3 months. Notably, dabigatran treatment significantly reduced hepatic fibrin deposition, hepatic inflammation, hepatocellular injury, and steatosis in mice fed a HFD. Of interest, dabigatran treatment also significantly attenuated HFD-induced body weight gain. Gene expression analysis suggested that thrombin potentially drives NAFLD pathogenesis by altering the expression of genes associated with lipid metabolism and bile acid synthesis. Collectively, the results suggest that thrombin activity is central to HFD-induced body weight gain, liver injury, and inflammation and provide the proof-of-principle evidence that pharmacological thrombin inhibition could be effective in limiting NAFLD and associated pathologies.


Asunto(s)
Bencimidazoles/farmacología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/tratamiento farmacológico , Trombina/antagonistas & inhibidores , Trombina/metabolismo , beta-Alanina/análogos & derivados , Alanina Transaminasa/sangre , Animales , Ácidos y Sales Biliares/biosíntesis , Dabigatrán , Hígado Graso/genética , Hígado Graso/metabolismo , Fibrina , Expresión Génica/efectos de los fármacos , Inflamación/sangre , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Aumento de Peso/efectos de los fármacos , beta-Alanina/farmacología
18.
Adv Biol (Weinh) ; : e2300131, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814378

RESUMEN

In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.

19.
Toxicol Appl Pharmacol ; 262(2): 124-38, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22561333

RESUMEN

Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3-520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that were consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose-response modeling resulted in similar median EC50s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (µg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ~2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes.


Asunto(s)
Carcinógenos Ambientales/toxicidad , Cromo/toxicidad , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Intestino Delgado/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/química , ARN/genética , Ratas , Ratas Endogámicas F344 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
20.
Toxicol Appl Pharmacol ; 259(1): 13-26, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22155349

RESUMEN

Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90days of exposure to 0, 0.3, 4, 14, 60, 170 or 520mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose-response modeling identified >80% of the differentially expressed genes exhibited sigmoidal dose-response curves with EC(50) values ranging from 10 to 100mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC(50) values <10mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation.


Asunto(s)
Cromo/toxicidad , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Agua Potable/química , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Duodeno/patología , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Ratones , Ratones Endogámicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA