Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Resist Updat ; 62: 100833, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429792

RESUMEN

Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Biomarcadores/metabolismo , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614241

RESUMEN

Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Neoplasias Óseas/patología , Osteosarcoma/patología , Microambiente Tumoral
3.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674750

RESUMEN

Hypoxia is a critical condition that governs survival, self-renewal, quiescence, metabolic shift and refractoriness to leukemic stem cell (LSC) therapy. The present study aims to investigate the hypoxia-driven regulation of the mammalian Target of the Rapamycin-2 (mTORC2) complex to unravel it as a novel potential target in chronic myeloid leukemia (CML) therapeutic strategies. After inducing hypoxia in a CML cell line model, we investigated the activities of mTORC1 and mTORC2. Surprisingly, we detected a significant activation of mTORC2 at the expense of mTORC1, accompanied by the nuclear localization of the main substrate phospho-Akt (Ser473). Moreover, the Gene Ontology analysis of CML patients' CD34+ cells showed enrichment in the mTORC2 signature, further strengthening our data. The deregulation of mTOR complexes highlights how hypoxia could be crucial in CML development. In conclusion, we propose a mechanism by which CML cells residing under a low-oxygen tension, i.e., in the leukemia quiescent LSCs, singularly regulate the mTORC2 and its downstream effectors.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sirolimus/farmacología , Enfermedad Crónica , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Células Madre/metabolismo , Hipoxia
4.
Semin Cell Dev Biol ; 98: 80-89, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31100351

RESUMEN

Mitochondria have been considered for a long time only as the principal source of building blocks and energy upon aerobic conditions. Recently they emerged as key players in cell proliferation, invasion and resistance to therapy. The most aggressive tumors are able to evade the immune-surveillance. Alterations in the mitochondria metabolism either in cancer cells or in host immune system cells are involved in such tumor-induced immune-suppression. This review will focus on the main mitochondrial dysfunctions in tumor and immune cell populations determining immune-resistance, and on the therapies that may target mitochondrial metabolism and restore a powerful anti-tumor immune-activity.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Humanos , Neoplasias/patología
5.
Pharmacol Res ; 175: 105975, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785319

RESUMEN

Triple-negative breast cancer is one of the most aggressive breast cancer. The first therapeutic option is chemotherapy, often based on anthracycline as doxorubicin. However, chemotherapy efficacy is limited in by the presence of P-glycoprotein (Pgp), a membrane transporter protein that effluxes doxorubicin, reducing its cellular accumulation and toxicity. Inhibiting Pgp activity with effective and non-toxic products is still an open challenge. In this work, we demonstrated that the natural product Glabratephrin (Glab), a prenylated flavonoid from Tephrosia purpurea with a unique chemical structure, increased doxorubicin accumulation and cytotoxicity in triple negative breast cancer cells with high levels of Pgp, characterized by both acquired or intrinsic resistance to doxorubicin. Glab also reduced the growth of Pgp-expressing tumors, without adding significant extra-toxicities to doxorubicin treatment. Interestingly, Glab did not change the expression of Pgp, but it reduced the affinity for Pgp and the efflux of doxorubicin, as suggested by the increased Km and the reduced Vmax. In silico molecular docking predicted that Glab binds two residues (phenylalanine 322, glutamine 721) localized in the transmembrane domains of Pgp, facing the extracellular environment. Moreover, site-directed mutagenesis identified glycine 185 as a critical residue mediating the reduced catalytic efficacy of Pgp elicited by Glab. We propose Glab as an effective and safe compound able to reverse doxorubicin resistance mediated by Pgp in triple negative breast cancers, opening the way to a new combinatorial approach that may improve chemotherapy efficacy in the most refractory and aggressive breast cancer.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antibióticos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Flavonoides/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Flavonoides/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos BALB C , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
6.
Inorg Chem ; 61(25): 9650-9666, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35699521

RESUMEN

Mixed-valence (MV) binuclear ferrocenyl compounds have long been studied as models for testing theories of electron transfer and in attempts to design molecular-scale electronic devices (e.g., molecular wires). In contrary to that, far less attention has been paid to MV binuclear ferrocenes as anticancer agents. Herein, we discuss the synthesis of six 1,2,3-triazole ferrocenyl compounds for combined (spectro)electrochemical, electron paramagnetic resonance (EPR), computational, and anticancer activity studies. Our synthetic approach was based on the copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction and enabled us to obtain in one step compounds bearing either one, two, or three ferrocenyl entities linked to the common 1,2,3-triazole core. Thus, two series of complexes were obtained, which pertain to derivatives of 3'-azido-3'-deoxythymidine (AZT) and 3-azidopropionylferrocene, respectively. Based on the experimental and theoretical data, the two mono-oxidized species corresponding to binuclear AZT and trinuclear 3-azidopropionylferrocene complexes have been categorized as class II mixed-valence according to the classification proposed by Robin and Day. Of importance is the observation that these two compounds are more active against human A549 and H1975 non-small-cell lung cancer cells than their congeners, which do not show MV characteristics. Moreover, the anticancer activity of MV species competes or surpasses, dependent on the cell line, the activity of reference anticancer drugs such as cisplatin, tamoxifen, and 5-fluorouracil. The most active from the entire series of compounds was the binuclear thymidine derivative with the lowest IC50 value of 5 ± 2 µM against lung H1975 cancer cells. The major mechanism of antiproliferative activity for the investigated MV compounds is based on reactive oxygen species generation in cancer cells. This hypothesis was substantiated by EPR spin-trapping experiments and the observation of decreased anticancer activity in the presence of N-acetyl cysteine (NAC) free-radical scavenger.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/química , Electrónica , Humanos , Metalocenos , Especies Reactivas de Oxígeno/metabolismo , Triazoles/química
7.
Bioorg Chem ; 119: 105514, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34864281

RESUMEN

Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Clorhidrato de Erlotinib/farmacología , Compuestos de Hierro/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/química , Humanos , Compuestos de Hierro/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Triazoles/química
8.
Drug Resist Updat ; 59: 100787, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34840068

RESUMEN

Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Hipoxia , Neoplasias/patología , Microambiente Tumoral
9.
Drug Resist Updat ; 49: 100670, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31846838

RESUMEN

Lipids, phospholipids and cholesterol in particular, are the predominant components of the plasma membrane, wherein multidrug efflux transporters of the ATP-binding cassette (ABC) superfamily reside as integral pump proteins. In the current review, we discuss how lipids potently modulate the expression and activity of these multidrug efflux pumps, contributing to the development of the multidrug resistance (MDR) phenotype in cancer. The molecular mechanisms underlying this modulation of the MDR phenotype are pleiotropic. First, notwithstanding the high intra-and inter-tumor variability, MDR cells display an altered composition of plasma membrane phospholipids and glycosphingolipids, and are enriched with very long saturated fatty acid chains. This feature, along with the increased levels of cholesterol, decrease membrane fluidity, alter the spatial organization of membrane nano- and micro-domains, interact with transmembrane helices of ABC transporters, hence favoring drug binding and release. Second, MDR cells exhibit a peculiar membrane lipid composition of intracellular organelles including mitochondria and endoplasmic reticulum (ER). In this respect, they contain a lower amount of oxidizable fatty acids, hence being more resistant to oxidative stress and chemotherapy-induced apoptosis. Third, drug resistant cancer cells have a higher ratio of monosatured/polyunsatured fatty acids: this lipid signature reduces the production of reactive aldehydes with cytotoxic and pro-inflammatory activity and, together with the increased activity of anti-oxidant enzymes, limits the cellular damage induced by lipid peroxidation. Finally, specific precursors of phospholipids and cholesterol including ceramides and isoprenoids, are highly produced in MDR cells; by acting as second messengers, they trigger multiple signaling cascades that induce the transcription of drug efflux transporter genes and/or promote a metabolic reprogramming which supports the MDR phenotype. High-throughput lipidomics and computational biology technologies are a great tool in analyzing the tumor lipid signature in a personalized manner and in identifying novel biomarkers of drug resistance. Moreover, beyond the induction of MDR, lipid metabolism offers a remarkable opportunity to reverse MDR by using lipid analogues and repurposing lipid-targeting drugs (e.g. statins and aminobisphosphonates) that reprogram the lipid composition of drug resistant cells, hence rendering them drug sensitive.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Membrana Celular/metabolismo , Colesterol/metabolismo , Resistencia a Múltiples Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/metabolismo , Fosfolípidos/metabolismo
10.
Drug Resist Updat ; 53: 100718, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32736034

RESUMEN

Cancer is one of the main public health problems in the world. Systemic therapies such as chemotherapy and more recently target therapies as well as immunotherapy have improved the prognosis of this large group of complex malignant diseases. However, the frequent emergence of multidrug resistance (MDR) mechanisms is one of the major impediments towards curative treatment of cancer. While several mechanisms of drug chemoresistance are well defined, resistance to immunotherapy is still insufficiently unclear due to the complexity of the immune response and its dependence on the host. Expression and regulation of immune checkpoint molecules (such as PD-1, CD279; PD-L1, CD274; and CTLA-4, CD152) play a key role in the response to immunotherapy. In this regard, immunotherapy based on immune checkpoints inhibitors (ICIs) is a common clinical approach for treatment of patients with poor prognosis when other first-line therapies have failed. Unfortunately, about 70 % of patients are classified as non-responders, or they progress after initial response to these ICIs. Multiple factors can be related to immunotherapy resistance: characteristics of the tumor microenvironment (TME); presence of tumor infiltrating lymphocytes (TILs), such as CD8 + T cells associated with treatment-response; presence of tumor associated macrophages (TAMs); activation of certain regulators (like PIK3γ or PAX4) found present in non-responders; a low percentage of PD-L1 expressing cells; tumor mutational burden (TMB); gain or loss of antigen-presenting molecules; genetic and epigenetic alterations correlated with resistance. This review provides an update on the current state of immunotherapy resistance presenting targets, biomarkers and remedies to overcome such resistance.


Asunto(s)
Biomarcadores de Tumor/análisis , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Mutación , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
Int J Cancer ; 146(1): 192-207, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31107974

RESUMEN

Malignant pleural mesothelioma (MPM) is a tumor with high chemoresistance and poor prognosis. MPM-initiating cells (ICs) are known to be drug resistant, but it is unknown if and how stemness-related pathways determine chemoresistance. Moreover, there are no predictive markers of IC-associated chemoresistance. Aim of this work is to clarify if and by which mechanisms the chemoresistant phenotype of MPM IC was due to specific stemness-related pathways. We generated MPM IC from primary MPM samples and compared the gene expression and chemo-sensitivity profile of IC and differentiated/adherent cells (AC) of the same patient. Compared to AC, IC had upregulated the drug efflux transporter ABCB5 that determined resistance to cisplatin and pemetrexed. ABCB5-knocked-out (KO) IC clones were resensitized to the drugs in vitro and in patient-derived xenografts. ABCB5 was transcriptionally activated by the Wnt/GSK3ß/ß-catenin/c-myc axis that also increased IL-8 and IL-1ß production. IL-8 and IL-1ß-KO IC clones reduced the c-myc-driven transcription of ABCB5 and reacquired chemosensitivity. ABCB5-KO clones had lower IL-8 and IL-1ß secretion, and c-myc transcriptional activity, suggesting that either Wnt/GSK3ß/ß-catenin and IL-8/IL-1ß signaling drive c-myc-mediated transcription of ABCB5. ABCB5 correlated with lower time-to-progression and overall survival in MPM patients treated with cisplatin and pemetrexed. Our work identified multiple autocrine loops linking stemness pathways and resistance to cisplatin and pemetrexed in MPM IC. ABCB5 may represent a new target to chemosensitize MPM IC and a potential biomarker to predict the response to the first-line chemotherapy in MPM patients.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Resistencia a Antineoplásicos/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mesotelioma/tratamiento farmacológico , Neoplasias Pleurales/tratamiento farmacológico , Vía de Señalización Wnt , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Mesotelioma/metabolismo , Mesotelioma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/patología
12.
Haematologica ; 105(4): 1042-1054, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31289209

RESUMEN

In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53 dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53 dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53 dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53 dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Ratones , Fosfatidilinositol 3-Quinasas/genética , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
13.
Cell Mol Life Sci ; 76(3): 609-625, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30430199

RESUMEN

Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). We recently identified a library of H2S-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells. Here we investigated the molecular mechanisms of the higher efficacy of Sdox in human osteosarcoma cells with increasing resistance to doxorubicin. Differently from doxorubicin, Sdox preferentially accumulated within the endoplasmic reticulum (ER), and its accumulation was only modestly reduced in Pgp-expressing osteosarcoma cells. The increase in doxorubicin resistance was paralleled by the progressive down-regulation of genes of ER-associated protein degradation/ER-quality control (ERAD/ERQC), two processes that remove misfolded proteins and protect cell from ER stress-triggered apoptosis. Sdox, that sulfhydrated ER-associated proteins and promoted their subsequent ubiquitination, up-regulated ERAD/ERQC genes. This up-regulation, however, was insufficient to protect cells, since Sdox activated ER stress-dependent apoptotic pathways, e.g., the C/EBP-ß LIP/CHOP/PUMA/caspases 12-7-3 axis. Sdox also promoted the sulfhydration of Pgp that was subsequently ubiquitinated: this process further enhanced Sdox retention and toxicity in resistant cells. Our work suggests that Sdox overcomes doxorubicin resistance in osteosarcoma cells by at least two mechanisms: it induces the degradation of Pgp following its sulfhydration and produces a huge misfolding of ER-associated proteins, triggering ER-dependent apoptosis. Sdox may represent the prototype of innovative anthracyclines, effective against doxorubicin-resistant/Pgp-expressing osteosarcoma cells by perturbing the ER functions.


Asunto(s)
Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Antibióticos Antineoplásicos/uso terapéutico , Apoptosis , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Humanos , Immunoblotting , Concentración 50 Inhibidora , Reacción en Cadena de la Polimerasa
14.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397184

RESUMEN

Multidrug resistance (MDR) is the main obstacle to current chemotherapy and it is mainly due to the overexpression of some efflux transporters such as MRP1. One of the most studied strategies to overcome MDR has been the inhibition of MDR pumps through small molecules, but its translation into the clinic unfortunately failed. Recently, a phenomenon called collateral sensitivity (CS) emerged as a new strategy to hamper MDR acting as a synthetic lethality, where the genetic changes developed upon the acquisition of resistance towards a specific agent are followed by the development of hypersensitivity towards a second agent. Among our library of sigma ligands acting as MDR modulators, we identified three compounds, F397, F400, and F421, acting as CS-promoting agents. We deepened their CS mechanisms in the "pure" model of MRP1-expressing cells (MDCK-MRP1) and in MRP1-expressing/drug resistant non-small cell lung cancer cells (A549/DX). The in vitro results demonstrated that (i) the three ligands are highly cytotoxic for MRP1-expressing cells; (ii) their effect is MRP1-mediated; (iii) they increase the cytotoxicity induced by cis-Pt, the therapeutic agent commonly used in the treatment of lung tumors; and (iv) their effect is ROS-mediated. Moreover, a preclinical in vivo study performed in lung tumor xenografts confirms the in vitro findings, making the three CS-promoting agents candidates for a novel therapeutic approach in lung resistant tumors.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Sensibilidad Colateral al uso de Fármacos , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos , Femenino , Glutatión/metabolismo , Humanos , Ligandos , Neoplasias Pulmonares/enzimología , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599901

RESUMEN

Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Osteosarcoma/tratamiento farmacológico , ARN Nucleolar Pequeño/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proliferación Celular , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Células Tumorales Cultivadas
16.
Int J Mol Sci ; 20(10)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117237

RESUMEN

The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Neoplasias/fisiopatología
18.
Molecules ; 23(6)2018 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890725

RESUMEN

P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs used against glioblastoma multiforme (GB). Indeed, Pgp is highly expressed in GB stem cells and in the brain-blood barrier (BBB), the peculiar endothelium surrounding the brain. Inhibiting Pgp activity in the BBB and GB is still an open challenge. Here, we tested the efficacy of a small library of tetrahydroisoquinoline derivatives with an EC50 for Pgp ≤ 50 nM, in primary human BBB cells and in patient-derived GB samples, from which we isolated differentiated/adherent cells (AC, i.e., Pgp-negative/doxorubicin-sensitive cells) and stem cells (neurospheres, NS, i.e., Pgp-positive/doxorubicin-resistant cells). Three compounds used at 1 nM increased the delivery of doxorubicin, a typical substrate of Pgp, across BBB monolayer, without altering the expression and activity of other transporters. The compounds increased the drug accumulation within NS, restoring doxorubicin-induced necrosis and apoptosis, and reducing cell viability. In co-culture systems, the compounds added to the luminal face of BBB increased the delivery of doxorubicin to NS growing under BBB and rescued the drug's cytotoxicity. Our work identified new ligands of Pgp active at low nanomolar concentrations. These compounds reduce Pgp activity in BBB and GB and improve in vitro chemotherapy efficacy in this tumor.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Tetrahidroisoquinolinas/farmacología , Animales , Neoplasias Encefálicas/patología , Perros , Glioblastoma/patología , Humanos , Células de Riñón Canino Madin Darby , Unión Proteica
19.
Mol Cancer ; 16(1): 91, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28499449

RESUMEN

BACKGROUND: Nutrient deprivation, hypoxia, radiotherapy and chemotherapy induce endoplasmic reticulum (ER) stress, which activates the so-called unfolded protein response (UPR). Extensive and acute ER stress directs the UPR towards activation of death-triggering pathways. Cancer cells are selected to resist mild and prolonged ER stress by activating pro-survival UPR. We recently found that drug-resistant tumor cells are simultaneously resistant to ER stress-triggered cell death. It is not known if cancer cells adapted to ER stressing conditions acquire a chemoresistant phenotype. METHODS: To investigate this issue, we generated human cancer cells clones with acquired resistance to ER stress from ER stress-sensitive and chemosensitive cells. RESULTS: ER stress-resistant cells were cross-resistant to multiple chemotherapeutic drugs: such multidrug resistance (MDR) was due to the overexpression of the plasma-membrane transporter MDR related protein 1 (MRP1). Gene profiling analysis unveiled that cells with acquired resistance to ER stress and chemotherapy share higher expression of the UPR sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK), which mediated the erythroid-derived 2-like 2 (Nrf2)-driven transcription of MRP1. Disrupting PERK/Nrf2 axis reversed at the same time resistance to ER stress and chemotherapy. The inducible silencing of PERK reduced tumor growth and restored chemosensitivity in resistant tumor xenografts. CONCLUSIONS: Our work demonstrates for the first time that the adaptation to ER stress in cancer cells produces a MDR phenotype. The PERK/Nrf2/MRP1 axis is responsible for the resistance to ER stress and chemotherapy, and may represent a good therapeutic target in aggressive and resistant tumors.


Asunto(s)
Neoplasias del Colon/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Factor 2 Relacionado con NF-E2/genética , eIF-2 Quinasa/genética , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HT29 , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Ensayos Antitumor por Modelo de Xenoinjerto , eIF-2 Quinasa/antagonistas & inhibidores
20.
Pharmacol Res ; 117: 67-74, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28007569

RESUMEN

A controversial relationship between sigma-2 and progesterone receptor membrane component 1 (PGRMC1) proteins, both representing promising targets for the therapy and diagnosis of tumors, exists since 2011, when the sigma-2 receptor was reported to be identical to PGRMC1. Because a misidentification of these proteins will lead to biased future research hampering the possible diagnostic and therapeutic exploitation of the two targets, there is the need to solve the debate on their identity. With this aim, we have herein investigated uptake and distribution of structurally different fluorescent sigma-2 receptor ligands by flow cytometry and confocal microscopy in MCF7 cells, where together with intrinsic sigma-2 receptors, PGRMC1 was constitutively present or alternatively silenced or overexpressed. HCT116 cells, with constitutive or silenced PGRMC1, were also studied. These experiments showed that the fluorescent sigma-2 ligands bind to their receptor irrespective of PGRMC1 expression. Furthermore, isothermal titration calorimetry was conducted to examine if DTG and PB28, two structurally distinct nanomolar affinity sigma-2 ligands, bind to purified PGRMC1 proteins that have recently been revealed to form both apo-monomeric and heme-mediated dimeric forms. While no binding to apo-PGRMC1 monomer was detected, a micromolar affinity to heme-mediated dimerized PGRMC1 was demonstrated in DTG but not in PB28. The current data provide evidence that sigma-2 receptor and PGRMC1 are not identical, paving the pathway for future unbiased research in which these two attractive targets are treated as different proteins while the identification of the true sigma-2 protein further needs to be pursued.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Receptores sigma/metabolismo , Línea Celular Tumoral , Colorantes Fluorescentes/metabolismo , Células HCT116 , Humanos , Ligandos , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA