Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet Oncol ; 25(5): 668-682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552658

RESUMEN

BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD. METHODS: In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions. FINDINGS: We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions. INTERPRETATION: The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD. FUNDING: The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.


Asunto(s)
Proteínas de Unión al ADN , Síndromes Neoplásicos Hereditarios , Humanos , Masculino , Femenino , Niño , Preescolar , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/terapia , Estudios Transversales , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/epidemiología , Reparación de la Incompatibilidad de ADN , Estudios Longitudinales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Incidencia , Proteína 2 Homóloga a MutS/genética , Homólogo 1 de la Proteína MutL/genética , Adulto , Adulto Joven , Mutación
2.
Curr Oncol Rep ; 22(5): 47, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32297022

RESUMEN

The original version of this review article unfortunately contained a mistake in the author group section.

3.
Curr Oncol Rep ; 22(2): 19, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32030483

RESUMEN

PURPOSE OF REVIEW: H3K27M is a frequent histone mutation within diffuse midline gliomas and is associated with a dismal prognosis, so much so that the 2016 CNS WHO classification system created a specific category of "Diffuse Midline Glioma, H3K27M-mutant". Here we outline the latest pre-clinical data and ongoing current clinical trials that target H3K27M, as well as explore diagnosis and treatment monitoring by serial liquid biopsy. RECENT FINDINGS: Multiple epigenetic compounds have demonstrated efficacy and on-target effects in pre-clinical models. The imipridone ONC201 and the IDO1 inhibitor indoximod have demonstrated early clinical activity against H3K27M-mutant gliomas. Liquid biopsy of cerebrospinal fluid has shown promise for clinical use in H3K27M-mutant tumors for diagnosis and monitoring treatment response. While H3K27M has elicited a widespread platform of pre-clinical therapies with promise, much progress still needs to be made to improve outcomes for diffuse midline glioma patients. We present current treatment and monitoring techniques as well as novel approaches in identifying and targeting H3K27M-mutant gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias de la Médula Espinal , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Líquido Cefalorraquídeo , Ensayos Clínicos como Asunto , Glioma/diagnóstico , Glioma/tratamiento farmacológico , Glioma/genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Inmunoterapia Adoptiva , Biopsia Líquida , Mutación , Pronóstico , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/tratamiento farmacológico , Neoplasias de la Médula Espinal/genética
5.
J Neurooncol ; 137(1): 155-169, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29235051

RESUMEN

The number of targeted therapies utilized in precision medicine are rapidly increasing. Neuro-oncology offers a unique challenge due to the varying blood brain barrier (BBB) penetration of each agent. Neuro-oncologists face a difficult task weighing the growing number of potential targeted therapies and their likelihood of BBB penetration. We developed the CNS TAP Working Group and performed an extensive literature review for the evidence-based creation of the CNS TAP tool, which was retrospectively validated by analyzing brain tumor patients who underwent therapy targeted based on genomic results from an academic sequencing study (MiOncoseq, n = 17) or private molecular profiling (Foundation One, n = 7). The CNS TAP tool scores relevant targeted agents by applying multiple variables (i.e., pre-clinical data, clinical data, BBB permeability) to patient specific genomic information and clinical trial availability. In the Michigan cohort, the CNS TAP tool predicted the selected agent 85.7% of the time. The CNS TAP tool predicted the agent independently selected by pediatric neuro-oncologists in the Colorado cohort 50% of the time. Patients with recurrent brain tumors treated with agents predicted by the CNS TAP tool demonstrated a median progression-free survival of 4 months and four patients with recurrent high-grade glioma maintained ongoing partial responses of at least 6 months. The CNS TAP tool is a formalized algorithm to assist clinicians select the optimal targeted therapy for neuro-oncology patients. The CNS TAP tool has relatively high concordance with selected therapies and clinical outcomes in patients receiving targeted therapy in this heterogeneous retrospective cohort were promising.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Toma de Decisiones Clínicas/métodos , Medicina de Precisión/métodos , Adolescente , Adulto , Algoritmos , Barrera Hematoencefálica/metabolismo , Niño , Preescolar , Humanos , Lactante , Oncología Médica/métodos , Estudios Retrospectivos
6.
Pediatr Blood Cancer ; 64(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27862886

RESUMEN

Pediatric spinal oligodendrogliomas are rare and aggressive tumors. They do not share the same molecular features of adult oligodendroglioma, and no previous reports have examined the molecular features of pediatric spinal oligodendroglioma. We present the case of a child with a recurrent spinal anaplastic oligodendroglioma. We performed whole exome (paired tumor and germline DNA) and transcriptome (tumor RNA) sequencing, which revealed somatic mutations in NF1 and FGFR1. These data allowed us to explore potential personalized therapies for this patient and expose molecular drivers that may be involved in similar cases.


Asunto(s)
Eliminación de Gen , Proteínas de Neoplasias , Neurofibromina 1 , Oligodendroglioma , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Neoplasias de la Columna Vertebral , Preescolar , Exoma , Femenino , Humanos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neurofibromina 1/biosíntesis , Neurofibromina 1/genética , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias de la Columna Vertebral/diagnóstico por imagen , Neoplasias de la Columna Vertebral/genética , Neoplasias de la Columna Vertebral/metabolismo , Transcriptoma
7.
J Pediatr Hematol Oncol ; 39(8): e466-e469, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28731921

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant tumor that is commonly associated with biallelic alterations of SMARCB1. Recurrent or refractory AT/RT has not been molecularly characterized as well. We present the case of a child with recurrent AT/RT who underwent clinically integrated molecular profiling (germline DNA and tumor DNA/RNA sequencing). This demonstrated a somatic lesion in CDKN1C alongside hallmark loss of SMARCB1. This data allowed us to explore potential personalized therapies for this patient and expose a molecular driver that may be involved in similar cases.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Mutación , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/genética , Teratoma/diagnóstico , Teratoma/genética , Biopsia , Encéfalo/patología , Terapia Combinada , Femenino , Humanos , Inmunohistoquímica , Lactante , Imagen por Resonancia Magnética , Recurrencia , Tumor Rabdoide/terapia , Análisis de Secuencia de ADN , Teratoma/terapia , Resultado del Tratamiento
8.
J Pediatr Hematol Oncol ; 38(4): 269-73, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26907655

RESUMEN

Survival after recurrence of medulloblastoma has not been reported in an unselected cohort of patients in the contemporary era. We reviewed 55 patients diagnosed with medulloblastoma between 2000 and 2010, and treated at Seattle Children's Hospital to evaluate patterns of relapse treatment and survival. Fourteen of 47 patients (30%) over the age of 3 experienced recurrent or progressive medulloblastoma after standard therapy. The median time from diagnosis to recurrence was 18.0 months (range, 3.6 to 62.6 mo), and site of recurrence was metastatic in 86%. The median survival after relapse was 10.3 months (range, 1.3 to 80.5 mo); 3-year survival after relapse was 18%. There were trend associations between longer survival and having received additional chemotherapy (median survival 12.8 vs. 1.3 mo, P=0.16) and radiation therapy (15.4 vs. 5.9 mo, P=0.20). Isolated local relapse was significantly associated with shorter survival (1.3 vs. 12.8 mo, P=0.009). Recurrence of medulloblastoma is more likely to be metastatic than reported in previous eras. Within the limits of our small sample, our data suggest a potential survival benefit from retreatment with cytotoxic chemotherapy and radiation even in heavily pretreated patients. This report serves as a baseline against which to evaluate novel therapy combinations.


Asunto(s)
Meduloblastoma/mortalidad , Adolescente , Niño , Femenino , Humanos , Masculino , Meduloblastoma/patología , Meduloblastoma/secundario , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/radioterapia , Recurrencia , Retratamiento/métodos , Estudios Retrospectivos , Tasa de Supervivencia
10.
JCO Precis Oncol ; 8: e2300539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484211

RESUMEN

PURPOSE: Paired tumor-germline sequencing can identify somatic variants for targeted therapy and germline pathogenic variants (GPVs) causative of hereditary cancer/tumor predisposition syndromes. It is unknown how patients/families in pediatric oncology use information about an identified GPV. We assessed recall of germline results and actions taken on the basis of findings. METHODS: We completed phone surveys with patients (and/or their parent) with GPVs identified via a single academic medical center's paired tumor-germline sequencing study. Seven hundred forty pediatric (aged 0-25 years) oncology patients were enrolled in this sequencing study between May 2012 and August 2021. Ninety-six participants (13.0%) had at least one GPV identified and were therefore eligible for this survey. The parent/guardian (for patients younger than 18 years or deceased patients) or patients themselves (if 18 years or older) were contacted. Survey topics included germline result recall, experience with genetic counseling, changes to patient's cancer treatment/screening, sharing of results with family members, and lifestyle changes. RESULTS: Fifty-three surveys (response rate, 55.2%) were completed between October 2021 and June 2022. Thirty-seven (69.8%) respondents correctly recalled the identified GPV. Discussing results with a genetic counselor (P = .0001), having a GPV related to the cancer/tumor diagnosis (P = .002), and non-Hispanic White race/ethnicity (P = .02) were associated with accurate recall. Twenty-five respondents (47.2%) reported a change in the child's cancer treatment and/or screening recommendations, 17 respondents (32.1%) made a lifestyle change on the basis of the results, and 44 respondents (83.0%) shared results with at least one family member. CONCLUSION: While most respondents remembered that a GPV was identified in the patient, some did not recall having a GPV found, and others recalled germline findings incorrectly. Future work may determine patient/family preferences for timing/method of result return to optimize patient recall and use of germline results.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndromes Neoplásicos Hereditarios , Humanos , Niño , Predisposición Genética a la Enfermedad/genética , Oncología Médica , Mutación de Línea Germinal/genética , Células Germinativas
11.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915617

RESUMEN

Diffuse midline gliomas (DMGs) are lethal primary brain tumors in children. The imipridones ONC201 and ONC206 induce mitochondrial dysfunction and have emerged as promising therapies for DMG patients. However, efficacy as monotherapy is limited, identifying a need for strategies that enhance response. Another hurdle is the lack of biomarkers that report on drug-target engagement at an early timepoint after treatment onset. Here, using 1 H-magnetic resonance spectroscopy, which is a non-invasive method of quantifying metabolite pool sizes, we show that accumulation of ψ-aminobutyric acid (GABA) is an early metabolic biomarker that can be detected within a week of ONC206 treatment, when anatomical alterations are absent, in mice bearing orthotopic xenografts. Mechanistically, imipridones activate the mitochondrial protease ClpP and upregulate the stress-responsive transcription factor ATF4. ATF4, in turn, upregulates glutamate decarboxylase, which synthesizes GABA, and downregulates ABAT , which degrades GABA, leading to GABA accumulation in DMG cells and tumors. Functionally, GABA secreted by imipridone-treated cells acts in an autocrine manner via the GABAB receptor to induce expression of superoxide dismutase (SOD1), which mitigates imipridone-induced oxidative stress and, thereby, curbs apoptosis. Importantly, blocking autocrine GABA signaling using the clinical stage GABAB receptor antagonist SGS-742 exacerbates oxidative stress and synergistically induces apoptosis in combination with imipridones in DMG cells and orthotopic tumor xenografts. Collectively, we identify GABA as a unique metabolic adaptation to imipridones that can be leveraged for non-invasive assessment of drug-target engagement and therapy. Clinical translation of our studies has the potential to enable precision metabolic therapy and imaging for DMG patients. One Sentence Summary: Imipridones induce GABA accumulation in diffuse midline gliomas, an effect that can be leveraged for therapy and non-invasive imaging.

12.
Neuro Oncol ; 26(4): 735-748, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011799

RESUMEN

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS: We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS: High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS: Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Imidazoles , Piridinas , Pirimidinas , Niño , Humanos , Epigénesis Genética , Histonas/genética , Glioma Pontino Intrínseco Difuso/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Piperazinas
13.
Mol Cancer Ther ; 23(1): 24-34, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37723046

RESUMEN

Therapeutic resistance remains a major obstacle to successful clinical management of diffuse intrinsic pontine glioma (DIPG), a high-grade pediatric tumor of the brain stem. In nearly all patients, available therapies fail to prevent progression. Innovative combinatorial therapies that penetrate the blood-brain barrier and lead to long-term control of tumor growth are desperately needed. We identified mechanisms of resistance to radiotherapy, the standard of care for DIPG. On the basis of these findings, we rationally designed a brain-penetrant small molecule, MTX-241F, that is a highly selective inhibitor of EGFR and PI3 kinase family members, including the DNA repair protein DNA-PK. Preliminary studies demonstrated that micromolar levels of this inhibitor can be achieved in murine brain tissue and that MTX-241F exhibits promising single-agent efficacy and radiosensitizing activity in patient-derived DIPG neurospheres. Its physiochemical properties include high exposure in the brain, indicating excellent brain penetrance. Because radiotherapy results in double-strand breaks that are repaired by homologous recombination (HR) and non-homologous DNA end joining (NHEJ), we have tested the combination of MTX-241F with an inhibitor of Ataxia Telangiectasia Mutated to achieve blockade of HR and NHEJ, respectively, with or without radiotherapy. When HR blockers were combined with MTX-241F and radiotherapy, synthetic lethality was observed, providing impetus to explore this combination in clinically relevant models of DIPG. Our data provide proof-of-concept evidence to support advanced development of MTX-241F for the treatment of DIPG. Future studies will be designed to inform rapid clinical translation to ultimately impact patients diagnosed with this devastating disease.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Niño , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Recurrencia Local de Neoplasia , Reparación del ADN , Transducción de Señal , ADN/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología
14.
Neuro Oncol ; 26(Supplement_2): S125-S135, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38124481

RESUMEN

Background Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. Methods We have previously shown preclinical efficacy of targeting both oxidative phosphorylation and glycolysis through treatment with ONC201, which activates the mitochondrial protease ClpP, and paxalisib, which inhibits PI3K/mTOR, respectively. Results ONC201 and paxalisib combination treatment aimed at inducing metabolic distress led to the design of the first DMG-specific platform trial PNOC022 (NCT05009992). Conclusions Here, we expand on the PNOC022 rationale and discuss various considerations, including liquid biome, microbiome, and genomic biomarkers, quality-of-life endpoints, and novel imaging modalities, such that we offer direction on future clinical trials in DMG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patología , Neoplasias Encefálicas/patología , Niño , Adulto Joven , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pirimidinas/uso terapéutico , Adulto , Femenino , Proyectos de Investigación , Pronóstico , Masculino , Calidad de Vida
15.
Neuro Oncol ; 26(Supplement_2): S155-S164, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38400780

RESUMEN

BACKGROUND: This study evaluated the safety and pharmacokinetics (PK) of oral ONC201 administered twice-weekly on consecutive days (D1D2) in pediatric patients with newly diagnosed DIPG and/or recurrent/refractory H3 K27M glioma. METHODS: This phase 1 dose-escalation and expansion study included pediatric patients with H3 K27M-mutant glioma and/or DIPG following ≥1 line of therapy (NCT03416530). ONC201 was administered D1D2 at 3 dose levels (DLs; -1, 1, and 2). The actual administered dose within DLs was dependent on weight. Safety was assessed in all DLs; PK analysis was conducted in DL2. Patients receiving once-weekly ONC201 (D1) served as a PK comparator. RESULTS: Twelve patients received D1D2 ONC201 (DL1, n = 3; DL1, n = 3; DL2, n = 6); no dose-limiting toxicities or grade ≥3 treatment-related adverse events occurred. PK analyses at DL2 (D1-250 mg, n = 3; D1-625 mg, n = 3; D1D2-250 mg, n = 2; D1D2-625 mg, n = 2) demonstrated variability in Cmax, AUC0-24, and AUC0-48, with comparable exposures across weight groups. No accumulation occurred with D1D2 dosing; the majority of ONC201 cleared before administration of the second dose. Cmax was variable between groups but did not appear to increase with D1D2 dosing. AUC0-48 was greater with D1D2 than once-weekly. CONCLUSIONS: ONC201 given D1D2 was well tolerated at all DLs and associated with greater AUC0-48.


Asunto(s)
Neoplasias Encefálicas , Glioma , Mutación , Humanos , Masculino , Femenino , Niño , Adolescente , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Preescolar , Histonas , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Pirimidinas/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Esquema de Medicación , Dosis Máxima Tolerada , Relación Dosis-Respuesta a Droga , Pronóstico , Estudios de Seguimiento
16.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594734

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

17.
Neuro Oncol ; 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554031

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

18.
Cancer Cell ; 42(1): 1-5, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38039965

RESUMEN

Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Mutación , Encéfalo/patología , Biopsia
19.
Cancer Discov ; 14(2): 258-273, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37823831

RESUMEN

Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Antígeno CTLA-4 , Glioma/tratamiento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/uso terapéutico , Inmunoterapia , Microambiente Tumoral
20.
J Clin Invest ; 134(6)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319732

RESUMEN

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Serina-Treonina Quinasas TOR/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Glucosa , Metformina/farmacología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA