Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 40(30): 5847-5856, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32554550

RESUMEN

The M-current is a low voltage-activated potassium current generated by neuronal Kv7 channels. A prominent role of the M-current is to a create transient increase of neuronal excitability in response to neurotransmitters through the suppression of this current. Accordingly, M-current suppression is assumed to be involved in higher brain functions including learning and memory. However, there is little evidence supporting such a role to date. To address this gap, we examined behavioral tasks to assess learning and memory in homozygous Kv7.2 knock-in mice, Kv7.2(S559A), which show reduced M-current suppression while maintaining a normal basal M-current activity in neurons. We found that Kv7.2(S559A) mice had normal object location memory and contextual fear memory, but impaired long-term object recognition memory. Furthermore, short-term memory for object recognition was intact in Kv7.2(S559A) mice. The deficit in long-term object recognition memory was restored by the administration of a selective Kv7 channel inhibitor, XE991, when delivered during the memory consolidation phase. Lastly, c-Fos induction 2 h after training in Kv7.2(S559A) mice was normal in the hippocampus, which corresponds to intact object location memory, but was reduced in the perirhinal cortex, which corresponds to impaired long-term object recognition memory. Together, these results support the overall conclusion that M-current suppression is important for memory consolidation of specific types of memories.SIGNIFICANCE STATEMENT Dynamic regulation of neuronal excitation is a fundamental mechanism for information processing in the brain, which is mediated by changes in synaptic transmissions or by changes in ion channel activity. Some neurotransmitters can facilitate action potential firing by suppression of a low voltage-activated potassium current, M-current. We demonstrate that M-current suppression is critical for establishment of long-term object recognition memory, but is not required for establishment of hippocampus-dependent location memory or contextual memory. This study suggests that M-current suppression is important for stable encoding of specific types of memories.


Asunto(s)
Canal de Potasio KCNQ2/fisiología , Consolidación de la Memoria/fisiología , Reconocimiento en Psicología/fisiología , Olfato/fisiología , Secuencia de Aminoácidos , Animales , Miedo/fisiología , Miedo/psicología , Femenino , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Odorantes , Reconocimiento en Psicología/efectos de los fármacos , Olfato/efectos de los fármacos
2.
Epilepsia ; 59(10): 1908-1918, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146722

RESUMEN

OBJECTIVES: The M-current is a low-threshold voltage-gated potassium current generated by Kv7 subunits that regulates neural excitation. It is important to note that M-current suppression, induced by activation of Gq-coupled neurotransmitter receptors, can dynamically regulate the threshold of action-potential firing and firing frequency. Here we sought to directly examine whether M-current suppression is involved in seizures and epileptogenesis. METHODS: Kv7.2 knock-in mice lacking the key protein kinase C (PKC) phosphorylation acceptor site for M-current suppression were generated by introducing an alanine substitution at serine residue 559 of mouse Kv7.2, mKv7.2(S559A). Basic electrophysiologic properties of the M-current between wild-type and Kv7.2(S559A) knock-in mice were analyzed in primary cultured neurons. Homozygous Kv7.2(S559A) knock-in mice were used to evaluate the protective effect of mutant Kv7.2 channel against chemoconvulsant-induced seizures. In addition, pilocarpine-induced neuronal damage and spontaneously recurrent seizures were evaluated after equivalent chemoconvulsant-induced status epilepticus was achieved by coadministration of the M-current-specific channel inhibitor, XE991. RESULT: Neurons from Kv7.2(S559A) knock-in mice showed normal basal M-currents. Knock-in mice displayed reduced M-current suppression when challenged by a muscarinic agonist, oxotremorine-M. Kv7.2(S559A) mice were resistant to chemoconvulsant-induced seizures with no mortality. Administration of XE991 transiently exacerbated seizures in knock-in mice equivalent to those of wild-type mice. Valproate, which disrupts neurotransmitter-induced M-current suppression, showed no additional anticonvulsant effect in Kv7.2(S559A) mice. After experiencing status epilepticus, Kv7.2(S559A) knock-in mice did not show seizure-induced cell death or spontaneous recurring seizures. SIGNIFICANCE: This study provides evidence that neurotransmitter-induced suppression of M-current generated by Kv7.2-containing channels exacerbates behavioral seizures. In addition, prompt recovery of M-current after status epilepticus prevents subsequent neuronal death and the development of spontaneously recurrent seizures. Therefore, prompt restoration of M-current activity may have a therapeutic benefit for epilepsy.


Asunto(s)
Regulación de la Expresión Génica/genética , Canal de Potasio KCNQ2/genética , Potenciales de la Membrana/genética , Mutación/genética , Estado Epiléptico , Animales , Anticonvulsivantes/uso terapéutico , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/metabolismo , Canal de Potasio KCNQ2/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Muscarínicos/toxicidad , Neuronas/efectos de los fármacos , Neuronas/fisiología , Pilocarpina/toxicidad , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/prevención & control
3.
J Cell Sci ; 128(22): 4235-45, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26446259

RESUMEN

Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport--the translocation domain. Proteins that bind to this domain were identified as α- and ß-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway.


Asunto(s)
Acetilcolina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Canal de Potasio KCNQ2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptor Muscarínico M1/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Humanos , Datos de Secuencia Molecular
4.
EMBO J ; 31(14): 3147-56, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22643219

RESUMEN

Several neurotransmitters, including acetylcholine, regulate neuronal tone by suppressing a non-inactivating low-threshold voltage-gated potassium current generated by the M-channel. Agonist dependent control of the M-channel is mediated by calmodulin, activation of anchored protein kinase C (PKC), and depletion of the phospholipid messenger phosphatidylinositol 4,5-bisphosphate (PIP2). In this report, we show how this trio of second messenger responsive events acts synergistically and in a stepwise manner to suppress activity of the M-current. PKC phosphorylation of the KCNQ2 channel subunit induces dissociation of calmodulin from the M-channel complex. The calmodulin-deficient channel has a reduced affinity towards PIP2. This pathway enhances the effect of concomitant reduction of PIP2, which leads to disruption of the M-channel function. These findings clarify how a common lipid cofactor, such as PIP2, can selectively regulate ion channels.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ2/metabolismo , Receptores Muscarínicos/metabolismo , Sistemas de Mensajero Secundario/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Canal de Potasio KCNQ2/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilación/fisiología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Receptores Muscarínicos/genética
5.
J Biol Chem ; 287(28): 23690-7, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22613709

RESUMEN

ß(1)- and ß(2)-adrenergic receptors utilize different signaling mechanisms to control cardiac function. Recent studies demonstrated that ß(2)-adrenergic receptors (ß(2)ARs) colocalize with some ion channels that are critical for proper cardiac function. Here, we demonstrate that ß(2)ARs form protein complexes with the pacemaker HCN4 channel, as well as with other subtypes of HCN channels. The adrenergic receptor-binding site was identified at a proximal region of the N-terminal tail of the HCN4 channel. A synthetic peptide derived from the ß(2)AR-binding domain of the HCN4 channel disrupted interaction between HCN4 and ß(2)AR. In addition, treatment with this peptide prevented adrenergic augmentation of pacemaker currents and spontaneous contraction rates but did not affect adrenergic regulation of voltage-gated calcium currents. These results suggest that the ion channel-receptor complex is a critical mechanism in ion channel regulation.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Células Cultivadas , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Células HEK293 , Células HeLa , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Immunoblotting , Isoproterenol/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Proteínas Musculares/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Péptidos/farmacología , Canales de Potasio , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirimidinas/farmacología , Ratas , Receptores Adrenérgicos beta 2/genética , Homología de Secuencia de Aminoácido , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiología
6.
Sci Rep ; 12(1): 3530, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241687

RESUMEN

T-cell engagers (TCEs) are a growing class of biotherapeutics being investigated in the clinic for treatment of a variety of hematological and solid tumor indications. However, preclinical evaluation of TCEs in vivo has been mostly limited to xenograft tumor models in human T-cell reconstituted immunodeficient mice, which have a number of limitations. To explore the efficacy of human TCEs in fully immunocompetent hosts, we developed a knock-in mouse model (hCD3E-epi) in which a 5-residue N-terminal fragment of murine CD3-epsilon was replaced with an 11-residue stretch from the human sequence that encodes for a common epitope recognized by anti-human CD3E antibodies in the clinic. T cells from hCD3E-epi mice underwent normal thymic development and could be efficiently activated upon crosslinking of the T-cell receptor with anti-human CD3E antibodies in vitro. Furthermore, a TCE targeting human CD3E and murine CD20 induced robust T-cell redirected killing of murine CD20-positive B cells in ex vivo hCD3E-epi splenocyte cultures, and also depleted nearly 100% of peripheral B cells for up to 7 days following in vivo administration. These results highlight the utility of this novel mouse model for exploring the efficacy of human TCEs in vivo, and suggest a useful tool for evaluating TCEs in combination with immuno-oncology/non-immuno-oncology agents against heme and solid tumor targets in hosts with a fully intact immune system.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Antígenos CD20 , Complejo CD3 , Epítopos , Humanos , Ratones , Linfocitos T
7.
J Clin Invest ; 125(10): 3904-14, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348896

RESUMEN

Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy.


Asunto(s)
Anticonvulsivantes/farmacología , Canal de Potasio KCNQ2/fisiología , Ácido Valproico/farmacología , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Antracenos/farmacología , Anticonvulsivantes/uso terapéutico , Carbamatos/farmacología , Células Cultivadas , Interacciones Farmacológicas , Femenino , Hipocampo/citología , Humanos , Canal de Potasio KCNQ2/efectos de los fármacos , Ácido Kaínico/toxicidad , Lipoilación/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenilendiaminas/farmacología , Fosforilación/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Receptor Muscarínico M1/efectos de los fármacos , Receptor Muscarínico M1/fisiología , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Transducción de Señal/efectos de los fármacos , Ganglio Cervical Superior/citología , Ácido Valproico/uso terapéutico
8.
PLoS One ; 8(12): e82290, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349250

RESUMEN

All subtypes of KCNQ channel subunits (KCNQ1-5) require calmodulin as a co-factor for functional channels. It has been demonstrated that calmodulin plays a critical role in KCNQ channel trafficking as well as calcium-mediated current modulation. However, how calcium-bound calmodulin suppresses the M-current is not well understood. In this study, we investigated the molecular mechanism of KCNQ2 current suppression mediated by calcium-bound calmodulin. We show that calcium induced slow calmodulin dissociation from the KCNQ2 channel subunit. In contrast, in homomeric KCNQ3 channels, calcium facilitated calmodulin binding. We demonstrate that this difference in calmodulin binding was due to the unique cysteine residue in the KCNQ2 subunit at aa 527 in Helix B, which corresponds to an arginine residue in other KCNQ subunits including KCNQ3. In addition, a KCNQ2 channel associated protein AKAP79/150 (79 for human, 150 for rodent orthologs) also preferentially bound calcium-bound calmodulin. Therefore, the KCNQ2 channel complex was able to retain calcium-bound calmodulin either through the AKPA79/150 or KCNQ3 subunit. Functionally, increasing intracellular calcium by ionomycin suppressed currents generated by KCNQ2, KCNQ2(C527R) or heteromeric KCNQ2/KCNQ3 channels to an equivalent extent. This suggests that a change in the binding configuration, rather than dissociation of calmodulin, is responsible for KCNQ current suppression. Furthermore, we demonstrate that KCNQ current suppression was accompanied by reduced KCNQ affinity toward phosphatidylinositol 4,5-bisphosphate (PIP2) when assessed by a voltage-sensitive phosphatase, Ci-VSP. These results suggest that a rise in intracellular calcium induces a change in the configuration of CaM-KCNQ binding, which leads to the reduction of KCNQ affinity for PIP2 and subsequent current suppression.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ionomicina/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas
9.
J Alzheimers Dis ; 20(1): 333-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20164577

RESUMEN

Prevalent gene variants involved in iron metabolism [hemochromatosis (HFE) H63D and transferrin C2 (TfC2)] have been associated with higher risk and earlier age at onset of Alzheimer's disease (AD), especially in men. Brain iron increases with age, is higher in men, and is abnormally elevated in several neurodegenerative diseases, including AD and Parkinson's disease, where it has been reported to contribute to younger age at onset in men. The effects of the common genetic variants (HFE H63D and/or TfC2) on brain iron were studied across eight brain regions (caudate, putamen, globus pallidus, thalamus, hippocampus, white matter of frontal lobe, genu, and splenium of corpus callosum) in 66 healthy adults (35 men, 31 women) aged 55 to 76. The iron content of ferritin molecules (ferritin iron) in the brain was measured with MRI utilizing the Field Dependent Relaxation Rate Increase (FDRI) method. 47% of the sample carried neither genetic variant (IRON-) and 53% carried one and/or the other (IRON+). IRON+ men had significantly higher FDRI compared to IRON- men (p=0.013). This genotype effect was not observed in women who, as expected, had lower FDRI than men. This is the first published evidence that these highly prevalent genetic variants in iron metabolism genes can influence brain iron levels in men. Clinical phenomena such as differential gender-associated risks of developing neurodegenerative diseases and age at onset may be associated with interactions between iron genes and brain iron accumulation. Clarifying mechanisms of brain iron accumulation may help identify novel interventions for age-related neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Ferritinas/metabolismo , Variación Genética/genética , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de la Membrana/genética , Mutación/genética , Caracteres Sexuales , Anciano , Envejecimiento/genética , Envejecimiento/patología , Encéfalo/anatomía & histología , Mapeo Encefálico , Femenino , Regulación de la Expresión Génica/genética , Proteína de la Hemocromatosis , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA