Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Planta ; 248(2): 477-488, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29777364

RESUMEN

MAIN CONCLUSION: Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Flavinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Sinorhizobium meliloti/genética , Acetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Biomasa , División Celular/efectos de los fármacos , Aumento de la Célula/efectos de los fármacos , Pared Celular/efectos de los fármacos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Flavinas/genética , Flavinas/metabolismo , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
2.
New Phytol ; 219(2): 743-756, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29781136

RESUMEN

Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors.


Asunto(s)
Bryopsida/metabolismo , Proteínas F-Box/metabolismo , Lactonas/metabolismo , Luz , Morfogénesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Transducción de Señal , Bryopsida/genética , Bryopsida/efectos de la radiación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Epistasis Genética/efectos de los fármacos , Epistasis Genética/efectos de la radiación , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Lactonas/farmacología , Modelos Biológicos , Morfogénesis/efectos de los fármacos , Mutación/genética , Fenotipo , Proteínas de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Homología de Secuencia de Aminoácido , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
3.
Plant Biotechnol J ; 11(2): 223-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23190212

RESUMEN

As the world's second most abundant biopolymer, starch serves as food, feed and renewable resource for bioenergy production and other industrial applications. Unlike storage lipids, starch is stored in the form of semi-crystalline granules, which are tissue- and species-specific in number, shape and size. Over the last decades, most biosynthetic and degradative enzymes of starch metabolism have been identified in the model species Arabidopsis thaliana. Based on this, biotechnological applications have arisen that led to a number of transgenic crop plants with elevated starch content or improved starch quality. Irrespective of this great success, there are still numerous open questions including the regulation of starch metabolism, the initiation of granule formation, the regulation of granule shape and size and many more, which will be tackled over the next decades. Here, we briefly summarize current knowledge concerning starch metabolism and its regulation and biotechnological use.


Asunto(s)
Biotecnología , Ingeniería Genética , Plantas Modificadas Genéticamente/metabolismo , Almidón/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Metabolismo de los Hidratos de Carbono , Plantas Modificadas Genéticamente/genética
4.
Planta ; 235(3): 553-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21979413

RESUMEN

Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff-Wheeler pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato.


Asunto(s)
Ácido Ascórbico/biosíntesis , Frutas/metabolismo , Nucleotidiltransferasas/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Inositol-Oxigenasa/genética , Inositol-Oxigenasa/metabolismo , Solanum lycopersicum/genética , Modelos Biológicos , Nucleotidiltransferasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
5.
Planta ; 236(6): 1803-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22903192

RESUMEN

The present study reports the effect of high molecular weight bacterial fructan (levan) and glucan (reuteran) on growth and carbohydrate partitioning in transgenic sugarcane plants. These biopolymers are products of bacterial glycosyltransferases, enzymes that catalyze the polymerization of glucose or fructose residues from sucrose. Constructs, targeted to different subcellular compartments (cell wall and cytosol) and driven by the Cauliflower mosaic virus-35S: maize-ubiquitin promoter, were introduced into sugarcane by biolistic transformation. Polysaccharide accumulation severely affected growth of callus suspension cultures. Regeneration of embryonic callus tissue into plants proved problematic for cell wall-targeted lines. When targeted to the cytosol, only plants with relative low levels of biopolymer accumulation survived. In internodal stalk tissue that accumulate reuteran (max 0.03 mg/g FW), sucrose content (ca 60 mg/g FW) was not affected, while starch content (<0.4 mg/g FW) was increased up to four times. Total carbohydrate content was not significantly altered. On the other hand, starch and sucrose levels were significantly reduced in plants accumulating levan (max 0.01 mg/g FW). Heterologous expression resulted in a reduction in total carbohydrate assimilation rather than a simple diversion by competition for substrate.


Asunto(s)
Carbono/metabolismo , Fructanos/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/genética , Saccharum/genética , Proteínas Bacterianas/genética , Biomasa , Radioisótopos de Carbono/análisis , Lactobacillus/enzimología , Lactobacillus/genética , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Saccharum/citología , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Almidón/análisis , Almidón/metabolismo , Sacarosa/análisis , Sacarosa/metabolismo , Técnicas de Cultivo de Tejidos , Transgenes
6.
Plant Physiol ; 154(1): 55-66, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20605913

RESUMEN

The role of pyrophosphate in primary metabolism is poorly understood. Here, we report on the transient down-regulation of plastid-targeted soluble inorganic pyrophosphatase in Nicotiana benthamiana source leaves. Physiological and metabolic perturbations were particularly evident in chloroplastic central metabolism, which is reliant on fast and efficient pyrophosphate dissipation. Plants lacking plastidial soluble inorganic pyrophosphatase (psPPase) were characterized by increased pyrophosphate levels, decreased starch content, and alterations in chlorophyll and carotenoid biosynthesis, while constituents like amino acids (except for histidine, serine, and tryptophan) and soluble sugars and organic acids (except for malate and citrate) remained invariable from the control. Furthermore, translation of Rubisco was significantly affected, as observed for the amounts of the respective subunits as well as total soluble protein content. These changes were concurrent with the fact that plants with reduced psPPase were unable to assimilate carbon to the same extent as the controls. Furthermore, plants with lowered psPPase exposed to mild drought stress showed a moderate wilting phenotype and reduced vitality, which could be correlated to reduced abscisic acid levels limiting stomatal closure. Taken together, the results suggest that plastidial pyrophosphate dissipation through psPPase is indispensable for vital plant processes.


Asunto(s)
Adaptación Fisiológica , Sequías , Silenciador del Gen , Pirofosfatasa Inorgánica/genética , Nicotiana/enzimología , Hojas de la Planta/enzimología , Virus del Mosaico del Tabaco/fisiología , Carbono/metabolismo , Difosfatos/metabolismo , Vectores Genéticos/genética , Pirofosfatasa Inorgánica/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Fenotipo , Fotosíntesis , Pigmentos Biológicos/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Solubilidad , Almidón/metabolismo , Estrés Fisiológico , Nicotiana/virología
7.
Plant Direct ; 5(11): e358, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765864

RESUMEN

Trehalose is a non-reducing disaccharide widely distributed in nature. The trehalose biosynthetic intermediate, trehalose 6-phosphate (Tre6P) is an essential regulatory and signaling molecule involved in both regulation of carbon metabolism and photosynthesis. To investigate the effect of altered trehalose synthesis on sucrose accumulation in sugarcane (Saccharum spp. hybrid), we independently overexpressed the Escherichia coli otsA (trehalose-6-phosphate synthase; TPS) and otsB (trehalose-6-phosphate phosphatase; TPP) genes and additionally partially silenced native TPS expression. In mature cane, sucrose levels in the otsA transgenic plants were lowered, whereas sucrose levels in the otsB transgenic plants were increased. Partial silencing of TPS expression in sugarcane transformed with a TPS-targeted microRNA recombinant construct was confirmed in leaf and mature internode tissue of transgenic plants. Most of the silencing transgenic lines accumulated trehalose at lower levels than the wild-type (WT) plants. The immature stalk tissue of these transgenic lines had lower levels of glucose and fructose, whereas the mature internode tissue had lower sucrose and glucose levels, when compared with the WT. Furthermore, various minor metabolites and sugars were detected in the sugarcane plants, which mostly decreased as the stalk tissue of the cane matured. The results demonstrate that manipulation of Tre6P/trehalose metabolism has the potential to modify the profile of soluble sugars accumulated in sugarcane stems.

8.
Plant J ; 57(1): 1-13, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18764922

RESUMEN

Starches extracted from most plant species are phosphorylated. alpha-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion (legwd::Ds) in the tomato GWD (LeGWD) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds. Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog (StGWD) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits.


Asunto(s)
Germinación , Fosfotransferasas (Aceptores Pareados)/metabolismo , Polen/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Almidón/metabolismo , Alelos , Elementos Transponibles de ADN , Fertilidad , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Mutagénesis Insercional , Fenotipo , Fosforilación , Fosfotransferasas (Aceptores Pareados)/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Polen/genética
9.
Planta ; 231(3): 595-608, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19957089

RESUMEN

Analyses of transgenic sugarcane clones with 45-95% reduced cytosolic pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by (13)C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity.


Asunto(s)
Regulación hacia Abajo , Hexosafosfatos/metabolismo , Fosfotransferasas/genética , Proteínas de Plantas/genética , Saccharum/metabolismo , Sacarosa/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Saccharum/enzimología , Saccharum/genética
10.
Planta ; 232(5): 1127-39, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20700743

RESUMEN

Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2. In addition, they contained a range of malto-oligosaccharides from maltose to maltoheptaose. Plants repressed in both isoforms had chlorotic leaves and did not grow as well as either the controls or lines where only one of the isoforms was repressed. Examination of photosynthetic parameters suggested that this was most likely due to a decrease in carbon assimilation. The subcellular localisation of StDPE2 was re-addressed in parallel with DPE2 from Arabidopsis thaliana by transient expression of yellow fluorescent protein fusions in tobacco. No translocation to the chloroplasts was observed for any of the fusion proteins, supporting a cytosolic role of the StDPE2 enzyme in leaf starch metabolism, as has been observed for Arabidopsis DPE2. It is concluded that StDPE1 and StDPE2 have individual essential roles in starch metabolism in potato and consequently repression of these disables regulation of leaf malto-oligosaccharides, starch content and photosynthetic activity and thereby plant growth possibly by a negative feedback mechanism.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Isoenzimas/metabolismo , Oligosacáridos/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Immunoblotting , Isoenzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/metabolismo
11.
Sci Rep ; 9(1): 15114, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641159

RESUMEN

The role of starch degradation in non-vascular plants is poorly understood. To expand our knowledge of this area, we have studied this process in Physcomitrella patens. This has been achieved through examination of the step known to initiate starch degradation in angiosperms, glucan phosphorylation, catalysed by glucan, water dikinase (GWD) enzymes. Phylogenetic analysis indicates that GWD isoforms can be divided into two clades, one of which contains GWD1/GWD2 and the other GWD3 isoforms. These clades split at a very early stage within plant evolution, as distinct sequences that cluster within each were identified in all major plant lineages. Of the five genes we identified within the Physcomitrella genome that encode GWD-like enzymes, two group within the GWD1/GWD2 clade and the others within the GWD3 clade. Proteins encoded by both loci in the GWD1/GWD2 clade, named PpGWDa and PpGWDb, are localised in plastids. Mutations of either PpGWDa or PpGWDb reduce starch phosphate abundance, however, a mutation at the PpGWDa locus had a much greater influence than one at PpGWDb. Only mutations affecting PpGWDa inhibited starch degradation. Mutants lacking this enzyme also failed to develop gametophores, a phenotype that could be chemically complemented using glucose supplementation within the growth medium.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Glucanos/genética , Mutación/genética , Fosfotransferasas (Aceptores Pareados)/genética , Almidón/metabolismo , Agua/metabolismo , Secuencia de Aminoácidos , Bryopsida/genética , Genoma de Planta , Isoenzimas/metabolismo , Fosforilación , Fosfotransferasas (Aceptores Pareados)/química , Filogenia , Plastidios/metabolismo , Solubilidad
12.
Front Plant Sci ; 9: 1930, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30719029

RESUMEN

Starch is a plant storage polyglucan that accumulates in plastids. It is composed of two polymers, amylose and amylopectin, with different structures and plays several roles in helping to determine plant yield. In leaves, it acts as a buffer for night time carbon starvation. Genetically altered plants that cannot synthesize or degrade starch efficiently often grow poorly. There have been a number of successful approaches to manipulate leaf starch metabolism that has resulted in increased growth and yield. Its degradation is also a source of sugars that can help alleviate abiotic stress. In edible parts of plants, starch often makes up the majority of the dry weight constituting much of the calorific value of food and feed. Increasing starch in these organs can increase this as well as increasing yield. Enzymes involved in starch metabolism are well known, and there has been much research analyzing their functions in starch synthesis and degradation, as well as genetic and posttranslational regulatory mechanisms affecting them. In this mini review, we examine work on this topic and discuss future directions that could be used to manipulate this metabolite for improved yield.

14.
Front Plant Sci ; 9: 1562, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425722

RESUMEN

Cassava (Manihot esculenta Crantz) is a root crop used as a foodstuff and as a starch source in industry. Starch functional properties are influenced by many structural features including the relative amounts of the two glucan polymers amylopectin and amylose, the branched structure of amylopectin, starch granule size and the presence of covalent modifications. Starch phosphorylation, where phosphates are linked either to the C3 or C6 carbon atoms of amylopectin glucosyl residues, is a naturally occurring modification known to be important for starch remobilization. The degree of phosphorylation has been altered in several crops using biotechnological approaches to change expression of the starch-phosphorylating enzyme GLUCAN WATER DIKINASE (GWD). Interestingly, this frequently alters other structural features of starch beside its phosphate content. Here, we aimed to alter starch phosphorylation in cassava storage roots either by manipulating the expression of the starch phosphorylating or dephosphorylating enzymes. Therefore, we generated transgenic plants in which either the wild-type potato GWD (StGWD) or a redox-insensitive version of it were overexpressed. Further plants were created in which we used RNAi to silence each of the endogenous phosphoglucan phosphatase genes STARCH EXCESS 4 (MeSEX4) and LIKE SEX4 2 (MeLSF), previously discovered by analyzing leaf starch metabolism in the model species Arabidopsis thaliana. Overexpressing the potato GWD gene (StGWD), which specifically phosphorylates the C6 position, increased the total starch-bound phosphate content at both the C6 and the C3 positions. Silencing endogenous LSF2 gene (MeLSF2), which specifically dephosphorylates the C3 position, increased the ratio of C3:C6 phosphorylation, showing that its function is conserved in storage tissues. In both cases, other structural features of starch (amylopectin structure, amylose content and starch granule size) were unaltered. This allowed us to directly relate the physicochemical properties of the starch to its phosphate content or phosphorylation pattern. Starch swelling power and paste clarity were specifically influenced by total phosphate content. However, phosphate position did not significantly influence starch functional properties. In conclusion, biotechnological manipulation of starch phosphorylation can specifically alter certain cassava storage root starch properties, potentially increasing its value in food and non-food industries.

15.
Front Plant Sci ; 9: 1044, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083175

RESUMEN

To examine the roles of starch phosphatases in potatoes, transgenic lines were produced where orthologs of SEX4 and LIKE SEX FOUR2 (LSF2) were repressed using RNAi constructs. Although repression of either SEX4 or LSF2 inhibited leaf starch degradation, it had no effect on cold-induced sweetening in tubers. Starch amounts were unchanged in the tubers, but the amount of phosphate bound to the starch was significantly increased in all the lines, with phosphate bound at the C6 position of the glucosyl units increased in lines repressed in StSEX4 and in the C3 position in lines repressed in StLSF2 expression. This was accompanied by a reduction in starch granule size and an alteration in the constituent glucan chain lengths within the starch molecule, although no obvious alteration in granule morphology was observed. Starch from the transgenic lines contained fewer chains with a degree of polymerization (DP) of less than 17 and more with a DP between 17 and 38. There were also changes in the physical properties of the starches. Rapid viscoanalysis demonstrated that both the holding strength and the final viscosity of the high phosphate starches were increased indicating that the starches have increased swelling power due to an enhanced capacity for hydration.

16.
Nat Biotechnol ; 20(12): 1256-60, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12426579

RESUMEN

Starch represents the most important carbohydrate used for food and feed purposes. With the aim of increasing starch content, we decided to modulate the adenylate pool by changing the activity of the plastidial adenylate kinase in transgenic potato plants. As a result, we observed a substantial increase in the level of adenylates and, most importantly, an increase in the level of starch to 60% above that found in wild-type plants. In addition, concentrations of several amino acids were increased by a factor of 2-4. These results are particularly striking because this genetic manipulation also results in an increased tuber yield. The modulation of the plastidial adenylate kinase activity in transgenic plants therefore represents a potentially very useful strategy for increasing formation of major storage compounds in heterotrophic tissues of higher plants.


Asunto(s)
Adenilato Quinasa/genética , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Almidón/biosíntesis , Adenilato Quinasa/metabolismo , Regulación hacia Abajo/fisiología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética/métodos , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Plastidios/metabolismo , Solanum tuberosum/clasificación , Solanum tuberosum/crecimiento & desarrollo , Especificidad de la Especie
17.
Trends Plant Sci ; 10(3): 130-7, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15749471

RESUMEN

During the day, plants accumulate starch in their leaves as an energy source for the coming night. Based on recent findings, the prevailing view of how the transitory starch is remobilized needs considerable revision. Analyses of transgenic and mutant plants demonstrate that plastidic glucan phosphorylase is not required for normal starch breakdown and cast doubt on the presumed essential role of alpha-amylase but do show that beta-amylase is important. Repression of the activity of a plastidic beta-amylase, the export of its product (maltose) or further metabolism of maltose by a newly identified transglucosidase impairs starch degradation. Breakdown of particulate starch also depends on the activity of glucan-water dikinase, which phosphorylates glucosyl residues within the polymer.


Asunto(s)
Hojas de la Planta/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oscuridad , Glucosa/metabolismo , Luz , Maltosa/metabolismo , Fenotipo , alfa-Amilasas/metabolismo , beta-Amilasa/metabolismo
18.
Front Plant Sci ; 8: 952, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638394

RESUMEN

Transgenic sorghum featuring RNAi suppression of certain kafirins was developed recently, to address the problem of poor protein digestibility in the grain. However, it was not firmly established if other important quality parameters were adversely affected by this genetic intervention. In the present study several quality parameters were investigated by surveying several important physical and biochemical grain traits. Important differences in grain weight, density and endosperm texture were found that serve to differentiate the transgenic grains from their wild-type counterpart. In addition, ultrastructural analysis of the protein bodies revealed a changed morphology that is indicative of the effect of suppressed kafirins. Importantly, lysine was found to be significantly increased in one of the transgenic lines in comparison to wild-type; while no significant changes in anti-nutritional factors could be detected. The results have been insightful for demonstrating some of the corollary changes in transgenic sorghum grain, that emerge from imposed kafirin suppression.

19.
FEMS Microbiol Lett ; 364(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119371

RESUMEN

Escherichia coli accumulate or degrade glycogen depending on environmental carbon supply. Glycogen phosphorylase (GlgP) and glycogen debranching enzyme (GlgX) are known to act on the glycogen polymer, while maltodextrin phosphorylase (MalP) is thought to remove maltodextrins released by GlgX. To examine the roles of these enzymes in more detail, single, double and triple mutants lacking all their activities were produced. GlgX and GlgP were shown to act directly on the glycogen polymer, while MalP most likely catabolised soluble malto-oligosaccharides. Interestingly, analysis of a triple mutant lacking all three enzymes indicates the presence of another enzyme that can release maltodextrins from glycogen.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Polisacáridos/metabolismo
20.
FEBS Lett ; 580(25): 5885-93, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17034793

RESUMEN

Genetically-encoded fluorescence resonance energy transfer (FRET) sensors for phosphate (P(i)) (FLIPPi) were engineered by fusing a predicted Synechococcus phosphate-binding protein (PiBP) to eCFP and Venus. Purified fluorescent indicator protein for inorganic phosphate (FLIPPi), in which the fluorophores are attached to the same PiBP lobe, shows P(i)-dependent increases in FRET efficiency. FLIPPi affinity mutants cover P(i) changes over eight orders of magnitude. COS-7 cells co-expressing a low-affinity FLIPPi and a Na(+)/P(i) co-transporter exhibited FRET changes when perfused with 100 microM P(i), demonstrating concentrative P(i) uptake by PiT2. FLIPPi sensors are suitable for real-time monitoring of P(i) metabolism in living cells, providing a new tool for fluxomics, analysis of pathophysiology or changes of P(i) during cell migration.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Fosfatos/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , ADN Bacteriano/genética , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Synechococcus/genética , Synechococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA