Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Pathog ; 20(3): e1012091, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478584

RESUMEN

No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.


Asunto(s)
Virus de la Hepatitis A , Loxapina , Animales , Ratones , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Biosíntesis de Proteínas , Replicación Viral/genética , ARN/metabolismo , Proteínas Virales/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 72(1): 41-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171903

RESUMEN

The capsid of human immunodeficiency virus type 1 (HIV-1) forms a conical structure by assembling oligomers of capsid (CA) proteins and is a virion shell that encapsulates viral RNA. The inhibition of the CA function could be an appropriate target for suppression of HIV-1 replication because the CA proteins are highly conserved among many strains of HIV-1, and the drug targeting CA, lenacapavir, has been clinically developed by Gilead Sciences, Inc. Interface hydrophobic interactions between two CA molecules via the Trp184 and Met185 residues in the CA sequence are indispensable for conformational stabilization of the CA multimer. Our continuous studies found two types of small molecules with different scaffolds, MKN-1 and MKN-3, designed by in silico screening as a dipeptide mimic of Trp184 and Met185 have significant anti-HIV-1 activity. In the present study, MKN-1 derivatives have been designed and synthesized. Their structure-activity relationship studies found some compounds having potent anti-HIV activity. The present results should be useful in the design of novel CA-targeting molecules with anti-HIV activity.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Humanos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Ensamble de Virus , Cápside/metabolismo , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo
3.
J Virol ; 95(13): e0217720, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33883222

RESUMEN

Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , Receptores Virales/metabolismo , Tropismo Viral/genética , Sustitución de Aminoácidos/genética , Animales , Antígenos CD4/metabolismo , Línea Celular , Células HEK293 , VIH-1/patogenicidad , Células HeLa , Humanos , Linfocitos/virología , Macaca fascicularis , Simulación de Dinámica Molecular , Receptores CCR5/metabolismo , Especificidad de la Especie
4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810482

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) uptakes homo-dimerized viral RNA genome into its own particle. A cis-acting viral RNA segment responsible for this event, termed packaging signal (psi), is located at the 5'-end of the viral genome. Although the psi segment exhibits nucleotide variation in nature, its effects on the psi function largely remain unknown. Here we show that a psi sequence from an HIV-1 regional variant, subtype D, has a lower packaging ability compared with that from another regional variant, HIV-1 subtype B, despite maintaining similar genome dimerization activities. A series of molecular genetic investigations narrowed down the responsible element of the selective attenuation to the two sequential nucleotides at positions 226 and 227 in the psi segment. Molecular dynamics simulations predicted that the dinucleotide substitution alters structural dynamics, fold, and hydrogen-bond networks primarily of the psi-SL2 element that contains the binding interface of viral nucleocapsid protein for the genome packaging. In contrast, such structural changes were minimal within the SL1 element involved in genome dimerization. These results suggest that the psi 226/227 dinucleotide pair functions as a cis-acting regulator to control the psi structure to selectively tune the efficiency of packaging, but not dimerization of highly variable HIV-1 genomes.


Asunto(s)
Genoma Viral , VIH-1 , Nucleótidos/genética , ARN Viral/metabolismo , Dimerización , Variación Genética , Células HEK293 , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/genética , Unión Proteica , Pliegue de Proteína , Transfección , Ensamble de Virus/genética
5.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189701

RESUMEN

The retroviral Gag capsid (Gag-CA) interdomain linker is an unstructured peptide segment connecting structured N-terminal and C-terminal domains. Although the region is reported to play roles in virion morphogenesis and infectivity, underlying molecular mechanisms remain unexplored. To address this issue, we determined biological and molecular phenotypes of HIV-1 CA linker mutants by experimental and in silico approaches. Among the nine linker mutants tested, eight exhibited attenuation of viral particle production to various extents mostly in parallel with a reduction in viral infectivity. Sucrose density gradient, confocal microscopy, and live-cell protein interaction analyses indicated that the defect is accompanied by attenuation of Gag-Gag interactions following Gag plasma membrane targeting in the cells. In silico analyses revealed distinct distributions of interaction-prone hydrophobic patches between immature and mature CA proteins. Molecular dynamics simulations predicted that the linker mutations can allosterically alter structural fluctuations, including the interaction surfaces apart from the mutation sites in both the immature and mature CA proteins. These results suggest that the HIV-1 CA interdomain linker is a cis-modulator of the CA interaction surfaces to optimize efficiency of Gag assembly, virion production, and viral infectivity.IMPORTANCE HIV-1 particle production and infection are highly ordered processes. Viral Gag proteins play a central role in the assembly and disassembly of viral molecules. Of these, capsid protein (CA) is a major contributor to the Gag-Gag interactions. CA consists of two structured domains, i.e., N-terminal (NTD) and C-terminal (CTD) domains, connected by an unstructured domain named the interdomain linker. While multiple regions in the NTD and CTD are reported to play roles in virion morphogenesis and infectivity, the roles of the linker region in Gag assembly and virus particle formation remain elusive. In this study, we showed by biological and molecular analyses that the linker region functions as an intramolecular modulator to tune Gag assembly, virion production, and viral infectivity. Our study thus illustrates a hitherto-unrecognized mechanism, an allosteric regulation of CA structure by the disordered protein element, for HIV-1 replication.


Asunto(s)
Cápside/metabolismo , VIH-1/fisiología , Mutación , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Regulación Alostérica , Cápside/química , Simulación por Computador , VIH-1/genética , Células HeLa , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
6.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626685

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Pulmón/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/virología , Células Vero
7.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29848582

RESUMEN

Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.


Asunto(s)
Sustitución de Aminoácidos , Anticuerpos Neutralizantes/metabolismo , Proteínas de la Cápside/genética , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/veterinaria , Macaca fascicularis/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Células COS , Chlorocebus aethiops , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Heparitina Sulfato/metabolismo , Macaca fascicularis/virología , Masculino , Células Vero , Virulencia
8.
J Virol ; 90(21): 10007-10021, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581974

RESUMEN

Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic picornaviruses, these isolates showed mild infectivity of glial and neural progenitor cells, but not of large neurons, in the cerebellum. However, the outcome of this viral infection in the cerebellum has not been clarified. Here, we examined the tropism of SAFV in the cerebellum. We obtained an in vivo-passaged strain from the cerebella of neonatal mice and examined its genome and its neurovirulence in the neonatal mouse brain. The passaged virus showed high infectivity and neurovirulence in the brain, especially the cerebellum, and affected cerebellar development. This unique neonatal mouse model will be helpful for elucidating the neuropathogenesis of SAFV infections occurring early in life.

9.
PLoS Pathog ; 11(7): e1005033, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26181772

RESUMEN

Enterovirus 71 (EV71), a major causative agent of hand, foot, and mouth disease, occasionally causes severe neurological symptoms. We identified P-selectin glycoprotein ligand-1 (PSGL-1) as an EV71 receptor and found that an amino acid residue 145 in the capsid protein VP1 (VP1-145) defined PSGL-1-binding (PB) and PSGL-1-nonbinding (non-PB) phenotypes of EV71. However, the role of PSGL-1-dependent EV71 replication in neuropathogenesis remains poorly understood. In this study, we investigated viral replication, genetic stability, and the pathogenicity of PB and non-PB strains of EV71 in a cynomolgus monkey model. Monkeys were intravenously inoculated with cDNA-derived PB and non-PB strains of EV71, EV71-02363-EG and EV71-02363-KE strains, respectively, with two amino acid differences at VP1-98 and VP1-145. Mild neurological symptoms, transient lymphocytopenia, and inflammatory cytokine responses, were found predominantly in the 02363-KE-inoculated monkeys. During the early stage of infection, viruses were frequently detected in clinical samples from 02363-KE-inoculated monkeys but rarely in samples from 02363-EG-inoculated monkeys. Histopathological analysis of central nervous system (CNS) tissues at 10 days postinfection revealed that 02363-KE induced neuropathogenesis more efficiently than that induced by 02363-EG. After inoculation with 02363-EG, almost all EV71 variants detected in clinical samples, CNS, and non-CNS tissues, possessed a G to E amino acid substitution at VP1-145, suggesting a strong in vivo selection of VP1-145E variants and CNS spread presumably in a PSGL-1-independent manner. EV71 variants with VP1-145G were identified only in peripheral blood mononuclear cells in two out of four 02363-EG-inoculated monkeys. Thus, VP1-145E variants are mainly responsible for the development of viremia and neuropathogenesis in a non-human primate model, further suggesting the in vivo involvement of amino acid polymorphism at VP1-145 in cell-specific viral replication, in vivo fitness, and pathogenesis in EV71-infected individuals.


Asunto(s)
Aminoácidos/metabolismo , Enterovirus Humano A/genética , Infecciones por Enterovirus/virología , Leucocitos Mononucleares/virología , Replicación Viral/genética , Sustitución de Aminoácidos , Animales , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Infecciones por Enterovirus/genética , Humanos , Macaca fascicularis
10.
Neuropathology ; 35(2): 107-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25263613

RESUMEN

The aim of this study was to establish a reliable method of virus detection for the diagnosis of critical enterovirus infections such as acute infective encephalitis, encephalomyelitis and myocarditis. Because histopathological and immunohistochemical analyses of paraffin-embedded tissues play an important role in recognizing infectious agents in tissue samples, six in-house polyclonal antibodies raised against three representative enteroviruses using an indirect immunofluorescence assay and immunohistochemistry were examined. This panel of polyclonal antibodies recognized three serotypes of enterovirus. Two of the polyclonal antibodies were raised against denatured virus particles from enterovirus A71, one was raised against the recombinant VP1 protein of coxsackievirus B3, and the other for poliovirus type 1 were raised against denatured virus particles, the recombinant VP1 protein and peptide 2C. Western blot analysis revealed that each of these antibodies recognized the corresponding viral antigen and none cross-reacted with non-enteroviruses within the family Picornaviridae. However, all cross-reacted to some extent with the antigens derived from other serotypes of enterovirus. Indirect immunofluorescence assay and immunohistochemistry revealed that the virus capsid and non-structural proteins were localized in the cytoplasm of affected culture cells, and skeletal muscles and neurons in neonatal mice experimentally-infected with human enterovirus. The antibodies also recognized antigens derived from recent clinical isolates of enterovirus A71, coxsackievirus B3 and poliovirus. In addition, immunohistochemistry revealed that representative antibodies tested showed the same recognition pattern according to each serotype. Thus, the panel of in-house anti-enterovirus polyclonal antibodies described herein will be an important tool for the screening and pathological diagnosis for enterovirus infections, and may be useful for the classification of different enterovirus serotypes, including coxsackieviruses A and B, echoviruses, enterovirus A71 and poliovirus.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/inmunología , Enterovirus/inmunología , Animales , Proteínas de la Cápside/inmunología , Infecciones por Coxsackievirus/diagnóstico , Infecciones por Coxsackievirus/inmunología , Infecciones por Echovirus/diagnóstico , Infecciones por Echovirus/inmunología , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Estudios de Evaluación como Asunto , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inmunohistoquímica , Ratones , Sensibilidad y Especificidad , Serotipificación
11.
PLoS Negl Trop Dis ; 18(1): e0011885, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190404

RESUMEN

Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , Dengue/epidemiología , Virulencia , Serogrupo , Genotipo , Replicación Viral
12.
J Gen Virol ; 94(Pt 4): 831-836, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23239569

RESUMEN

A mouse-adapted porcine epidemic diarrhea virus, MK-p10, showed higher neurovirulence in suckling mice than a non-adapted MK strain. There was no difference in virus growth, whereas clear differences between these two virus infections existed in the type of target cells infected, the spread of virus and the cytokine levels produced in the brain. In the early phase of infection, neurons, astrocytes and neural progenitor cells were infected by MK-p10, whereas neural progenitor cells were the only target cells infected by MK. On days 4-5 post-inoculation, MK-p10 antigens were distributed in a number of neurons in a wide area of the brain; however, antigens were restricted in MK infection. In moribund mice in both infection groups, viral antigens were found in a wide area of the brain. The wide spectrum of initial target cells following MK-p10 infection, as well as its faster spread in the brain, may be evidence of enhanced virulence in suckling mice.


Asunto(s)
Enfermedades del Sistema Nervioso/virología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Animales , Animales Recién Nacidos , Astrocitos/virología , Encéfalo/patología , Encéfalo/virología , Ratones , Enfermedades del Sistema Nervioso/patología , Células-Madre Neurales/virología , Neuronas/virología , Virulencia
13.
RSC Adv ; 13(3): 2156-2167, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712613

RESUMEN

The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer. In our previous study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site was synthesized and found to have significant anti-HIV-1 activity. In the present study, molecules with different scaffolds based on a dipeptide mimic of Trp184 and Met185 have been designed and synthesized. Their significant anti-HIV activity and their advantages compared to the previous compounds were examined. The present results should be useful in the design of novel CA-targeting anti-HIV agents.

14.
J Mol Biol ; 434(2): 167390, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883117

RESUMEN

Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.


Asunto(s)
VIH-1/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Anticodón/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , VIH-1/genética , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 4,5-Difosfato , Dominios y Motivos de Interacción de Proteínas , ARN Viral/genética , Ensamble de Virus/fisiología
15.
Viruses ; 15(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36680070

RESUMEN

Reverse transcriptase (RT) and integrase (IN) are encoded tandemly in the pol genes of retroviruses. We reported recently that HIV-1 RT and IN need to be supplied as the pol precursor intermediates, in which RT and IN are in fusion form (RTIN) to exert efficient reverse transcription in the context of HIV-1 replication. The mechanism underlying RTIN's effect, however, remains to be elucidated. In this study, we examined the effect of IN fusion on RT during reverse transcription by an in vitro cell-free assay, using recombinant HIV-1 RTIN (rRTIN). We found that, compared to recombinant RT (rRT), rRTIN generated significantly higher cDNAs under physiological concentrations of dNTPs (less than 10 µM), suggesting increased affinity of RTIN to dNTPs. Importantly, the cleavage of RTIN with HIV-1 protease reduced cDNA levels at a low dose of dNTPs. Similarly, sensitivities against RT inhibitors were significantly altered in RTIN form. Finally, analysis of molecular dynamics simulations of RT and RTIN suggested that IN can influence the structural dynamics of the RT active center and the inhibitor binding pockets in cis. Thus, we demonstrated, for the first time, the cis-allosteric regulatory roles of IN in RT structure and enzymatic activity.


Asunto(s)
Integrasa de VIH , Transcriptasa Inversa del VIH , Regulación Alostérica , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Integrasa de VIH/metabolismo
16.
Viruses ; 14(4)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458549

RESUMEN

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Asunto(s)
Alcaloides , Tratamiento Farmacológico de COVID-19 , Ebolavirus , Fiebre Hemorrágica Ebola , Alcaloides/farmacología , Antivirales/química , Sulfato de Dextran , Ebolavirus/metabolismo , Glicoproteínas , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Heparina/farmacología , Humanos , SARS-CoV-2 , Internalización del Virus
17.
PLoS One ; 16(1): e0245244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33412571

RESUMEN

IgA antibodies, which are secreted onto the mucosal surface as secretory IgA antibodies (SIgAs), play an important role in preventing influenza virus infection. A recent study reported that anti-hemagglutinin (HA) head-targeting antibodies increase anti-viral functions such as hemagglutination inhibition (HI) and virus neutralization (NT), in addition to HA binding activity (reactivity) via IgA polymerization. However, the functional properties of anti-viral IgA antibodies with mechanisms of action distinct from those of anti-HA head-targeting antibodies remain elusive. Here, we characterized the functional properties of IgG, monomeric IgA, and polymeric IgA anti-HA stalk-binding clones F11 and FI6, and B12 (a low affinity anti-HA stalk clone), as well as Fab-deficient (ΔFab) IgA antibodies. We found that IgA polymerization impacts the functional properties of anti-HA stalk antibodies. Unlike anti-HA head antibodies, the anti-viral functions of anti-HA stalk antibodies were not simply enhanced by IgA polymerization. The data suggest that two modes of binding (Fab paratope-mediated binding to the HA stalk, and IgA Fc glycan-mediated binding to the HA receptor binding site (RBS)) occur during interaction between anti-stalk HA IgA antibodies and HA. In situations where Fab paratope-mediated binding to the HA stalk exceeded IgA Fc glycan-mediated binding to HA RBS, IgA polymerization increased anti-viral functions. By contrast, when IgA Fc glycan-mediated binding to the HA RBS was dominant, anti-viral activity will fall upon IgA polymerization. In summary, the results suggest that coordination between these two independent binding modules determines whether IgA polymerization has a negative or positive effect on the anti-viral functions of anti-HA stalk IgA antibodies.


Asunto(s)
Hemaglutininas , Inmunoglobulina A , Vacunas contra la Influenza , Gripe Humana , Animales , Perros , Femenino , Humanos , Ratones , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Células Cultivadas , Células HEK293 , Hemaglutininas/química , Hemaglutininas/inmunología , Inmunogenicidad Vacunal , Inmunoglobulina A/química , Inmunoglobulina A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C
18.
Biomolecules ; 11(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546092

RESUMEN

The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction. A drug targeting CA however, has not been developed to date. Hydrophobic interactions between two CA molecules via Trp184/Met185 in CA were recently reported to be important for stabilization of the multimeric structure of CA. In the present study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site, was synthesized and its significant anti-HIV-1 activity was confirmed. Structure activity relationship (SAR) studies of its derivatives were performed and provided results that are expected to be useful in the future design and development of novel anti-HIV agents targeting CA.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/química , VIH-1/metabolismo , Fármacos Anti-VIH/síntesis química , Sitios de Unión , Cápside/química , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Simulación por Computador , Dimerización , Diseño de Fármacos , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Permeabilidad , Estereoisomerismo , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
19.
Viruses ; 13(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34578314

RESUMEN

The stalk domain of influenza virus envelope glycoprotein hemagglutinin (HA) constitutes the axis connecting the head and transmembrane domains, and plays pivotal roles in conformational rearrangements of HA for virus infection. Here we characterized molecular interactions between the anti-HA stalk neutralization antibody F11 and influenza A(H1N1)pdm09 HA to understand the structural basis of the actions and modifications of this antibody. In silico structural analyses using a model of the trimeric HA ectodomain indicated that the F11 Fab fragment has physicochemical properties, allowing it to crosslink two HA monomers by binding to a region near the proteolytic cleavage site of the stalk domain. Interestingly, the F11 binding allosterically caused a marked suppression of the structural dynamics of the HA cleavage loop and flanking regions. Structure-guided mutagenesis of the F11 antibody revealed a critical residue in the F11 light chain for the F11-mediated neutralization. Finally, the mutagenesis led to identification of a unique F11 derivative that can neutralize both F11-sensitive and F11-resistant A(H1N1)pdm09 viruses. These results raise the possibility that F11 sterically and physically disturbs proteolytic cleavage of HA for the ordered conformational rearrangements and suggest that in silico guiding experiments can be useful to create anti-HA stalk antibodies with new phenotypes.


Asunto(s)
Anticuerpos Antivirales/inmunología , Hemaglutininas/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales/genética , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hemaglutininas/genética , Humanos , Fragmentos Fab de Inmunoglobulinas , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida
20.
J Neuropathol Exp Neurol ; 79(2): 209-225, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845989

RESUMEN

Coxsackievirus B (CVB) causes severe morbidity and mortality in neonates and is sometimes associated with severe brain damage resulting from acute severe viral encephalomyelitis. However, the neuropathology of CVB infection remains unclear. A prototype strain of coxsackievirus B2 (Ohio-1) induces brain lesions in neonatal mice, resulting in dome-shaped heads, ventriculomegaly, and loss of the cerebral cortex. Here, we characterized the glial pathology in this mouse model. Magnetic resonance imaging revealed an absence of the cerebral cortex within 2 weeks after inoculation. Histopathology showed that virus replication triggered activation of microglia and astrocytes, and induced apoptosis in the cortex, with severe necrosis and lateral ventricular dilation. In contrast, the brainstem and cerebellum remained morphologically intact. Immunohistochemistry revealed high expression of the coxsackievirus and adenovirus receptor (a primary receptor for CVB) in mature neurons of the cortex, hippocampus, thalamus, and midbrain, demonstrating CVB2 infection of mature neurons in these areas. However, apoptosis and neuroinflammation from activated microglia and astrocytes differed in thalamic and cortical areas. Viral antigens were retained in the brains of animals in the convalescence phase with seroconversion. This animal model will contribute to a better understanding of the neuropathology of CVB infection.


Asunto(s)
Encéfalo/patología , Encéfalo/virología , Infecciones por Coxsackievirus/patología , Enterovirus Humano B/fisiología , Neuroglía/patología , Neuroglía/virología , Animales , Animales Recién Nacidos , Apoptosis , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Encefalitis Infecciosa/metabolismo , Encefalitis Infecciosa/patología , Encefalitis Infecciosa/virología , Ratones , Receptores Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA