RESUMEN
BACKGROUND: Immunoglobulin A (IgA) secretion in saliva decreases with age and may be the cause of increased vulnerability of the elderly to respiratory infections. The effect of oral intake of lactic acid bacteria on salivary secretory IgA (SIgA) in the elderly has not been reported. The objective of this study was to demonstrate the acceleration of salivary SIgA secretion by oral intake of Lactobacillus pentosus strain b240 (b240) in the elderly. RESULTS: A total of 80 healthy elderly individuals were randomly allocated to either an intervention (i.e., b240) or a control (i.e., placebo) group. The elderly individuals in the b240 group were given a sterile water beverage (125 mL) containing heat-killed b240 (4 × 109 cells), while those in the placebo group were given only a sterile water beverage (125 mL); both groups received their respective beverages once daily for 12 weeks. Saliva was collected before initiation of the study and every 2 weeks thereafter. Saliva flow rate and SIgA concentration were determined, and the SIgA secretion rate was calculated. The mean salivary SIgA secretion rate in the b240 group steadily increased until week 4 (exhibiting a 20% elevation relative to that at week 0), and then remained stable until week 12. Changes in SIgA secretion rate over the intervention period were significantly greater in the b240 group than in the placebo group. The treatment groups exhibited no significant differences in adverse events. CONCLUSIONS: Oral intake of L. pentosus strain b240 for 12 weeks significantly accelerated salivary SIgA secretion, thereby indicating its potential utility in the improvement of mucosal immunity and resistance against infection in the elderly.
RESUMEN
Lactic acid bacteria are well known to possess immune-modulating effects, but the mechanisms underlying their modulation of the gut immune system are not fully understood. Here, we examined the localization of heat-killed Lactobacillus pentosus strain b240 (b240) in intestinal tissues and the effect of b240 on adaptive immune cascades in the gut. Histological analysis showed that b240 co-localized with dendritic cells (DCs) in the subepithelial dome region of Peyer's patches (PPs). In a PP cell culture system, b240 promoted the production of immunoglobulin A (IgA), interleukin (IL)-6, IL-10, interferon (IFN)-γ, and tumor necrosis factor, but not IL-4, IL-5, B-cell activating factors, IFN-α, IFN-ß, and transforming growth factor-ß1. The enhanced IgA production by b240 was attenuated by neutralizing IL-6, a potent IgA-enhancing cytokine. b240 stimulated DCs to produce an elevated amount of IL-6 in a Toll-like receptor (TLR) 2-, but not TLR4- or TLR9-dependent manner. Finally, we demonstrated that TLR2-mediated IL-6 production from PP DCs in response to b240 activated B cells to produce a large amount of IgA in a DC-B cell co-culture system. Our findings open up the possibility that the heat-killed form of Lactobacillus pentosus strain b240 can be used as a TLR2-mediated DC-activating biologic for enhancing IgA production in the intestine.
Asunto(s)
Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Inmunoglobulina A/biosíntesis , Lactobacillus/fisiología , Ganglios Linfáticos Agregados/inmunología , Receptor Toll-Like 2/metabolismo , Animales , Células Dendríticas/citología , Células Dendríticas/inmunología , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Ganglios Linfáticos Agregados/microbiologíaRESUMEN
Salivary immunoglobulin A (IgA) is used as an immunity marker, as saliva can be easily collected, noninvasively with little stress. However, several saliva collection methods can be used. Our comparison between samples collected using different methods demonstrated that the salivary IgA secretion rate in samples collected using an aspiration method was significantly correlated with that in samples collected using a swab method. Moreover, the significant circadian variation in salivary IgA secretion rate in the aspirated saliva suggested that the aspiration method does not suppress salivary IgA secretion rate variability compared with the swab method. Therefore, the aspiration method should be considered as the preferable saliva collection method.
RESUMEN
Serotonin N-acetyltransferase (EC. 2.3.1.87) (AA-NAT) is a melatonin rhythm-generating enzyme in pineal glands. To establish a melatonin rhythm, AA-NAT activity is precisely regulated through several signaling pathways. Here we show novel regulation of AA-NAT activity, in which an intramolecular disulfide bond may function as a switch for the catalysis. Recombinant AA-NAT activity was irreversibly inhibited by N-ethylmaleimide (NEM) in an acetyl-CoA-protected manner. Oxidized glutathione or dissolved oxygen reversibly inhibited AA-NAT in an acetyl-CoA-protected manner. To identify the cysteine residues responsible for the inhibition, AA-NAT was first oxidized with dissolved oxygen, treated with NEM, reduced with dithiothreitol, and then labeled with [(14)C]NEM. Cys(61) and Cys(177) were specifically labeled in an acetyl-CoA-protected manner. The AA-NAT with the Cys(61) to Ala and Cys(177) to Ala double substitutions (C61A/C177A-AA-NAT) was fully active but did not exhibit sensitivity to either oxidation or NEM, whereas the AA-NATs with only the single substitutions retained about 40% of these sensitivities. An intramolecular disulfide bond between Cys(61) and Cys(177) formed upon oxidation and cleaved upon reduction was identified. Furthermore, C61A/C177A-AA-NAT expressed in COS7 cells was relatively insensitive to H(2)O(2)-evoked oxidative stress, whereas wild-type AA-NAT was strongly inhibited under the same conditions. These results indicate that the formation and cleavage of the disulfide bond between Cys(61) and Cys(177) produce the active and inactive states of AA-NAT. It is possible that intracellular redox conditions regulate AA-NAT activity through switching via an intramolecular disulfide bridge.