Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(6): 510-519, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38073249

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body. Although SMA is regarded as a motor neuron disorder, growing evidence shows that several peripheral organs contribute to SMA pathology. A gene therapy treatment, onasemnogene abeparvovec, is being explored in clinical trials via both systemic and central nervous system (CNS) specific delivery, but the ideal route of delivery as well as the long-term effectiveness is unclear. To investigate the impact of gene therapy long term, we assessed SMA mice at 6 months after treatment of either intravenous (IV) or intracerebroventricular (ICV) delivery of scAAV9-cba-SMN. Interestingly, we observed that SMN protein levels were restored in the peripheral tissues but not in the spinal cord at 6 months of age. However, ICV injections provided better motor neuron and motor function protection than IV injection, while IV-injected mice demonstrated better protection of neuromuscular junctions and muscle fiber size. Surprisingly, both delivery routes resulted in an equal rescue on survival, weight, and liver and pancreatic defects. These results demonstrate that continued peripheral AAV9-SMN gene therapy is beneficial for disease improvement even in the absence of SMN restoration in the spinal cord.


Asunto(s)
Atrofia Muscular Espinal , Animales , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Neuronas Motoras , Modelos Animales de Enfermedad , Sistema Nervioso Central , Terapia Genética
2.
Brain ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183150

RESUMEN

Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal Muscular Atrophy (SMA) is one such monogenic model caused by mutation or deletion of the Survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow to identify critical disease-driving molecules. Here, we analyzed the systemic characteristics of SMA employing proteomics, phosphoproteomics, translatomics and interactomics from two mouse models with different disease-severities and genetics. This systems approach revealed sub-networks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.

3.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385867

RESUMEN

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Corticosterona , Glucocorticoides , Ratones Endogámicos C57BL , Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Diferenciación Celular/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Glucocorticoides/farmacología , Corticosterona/farmacología , Ratones Endogámicos DBA , Células Cultivadas , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Antecedentes Genéticos , Masculino , Linaje de la Célula/efectos de los fármacos , Estrés Psicológico/metabolismo
4.
Gene Ther ; 30(1-2): 8-17, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35614235

RESUMEN

Loss or deletion of survival motor neuron 1 gene (SMN1) is causative for a severe and devastating neuromuscular disease, Spinal Muscular Atrophy (SMA). SMN1 produces SMN, a ubiquitously expressed protein, that is essential for the development and survival of motor neurons. Major advances and developments in SMA therapeutics are shifting the natural history of the disease. With three relatively new available therapies, nusinersen (Spinraza), onasemnogene abeparvovec (Zolgensma), and risdiplam (Evrysdi), patients survive longer and have improved outcomes. However, patients and families continue to face many challenges associated with use of these therapies, including poor treatment response and a variability in the benefits to those that do respond, suggesting that the quest for the SMA cure is not over. In this review, we discuss the current therapies, their limitations, and highlight necessary gaps that need to be addressed to guarantee the best outcomes for SMA patients.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Neuronas Motoras/metabolismo , Terapia Genética
5.
Glia ; 71(10): 2343-2355, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37272718

RESUMEN

Oligodendrocytes produce lipid-rich myelin sheaths that provide metabolic support to the underlying axon and facilitate saltatory conduction. Oligodendrocyte mitochondria supply the bulk of energy and carbon-chain backbones required for lipid synthesis. The sparsity of mitochondria in the myelin sheath suggests that tight regulation of mitochondrial trafficking is crucial for their efficient distribution in the cell. In particular, retention of mitochondria at axoglial junctions would support local lipid synthesis and membrane remodeling during myelination. How mitochondrial docking in oligodendrocytes is regulated is not known. Our findings indicate that syntaphilin (SNPH), a mitochondrial docking protein that has been characterized in neurons, is expressed by oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in vitro and present in the myelin sheath in vivo. We have previously reported that bath application of netrin-1 promotes the elaboration of myelin basic protein-positive membranes, and that localized presentation of a netrin-1 coated microbead results in rapid accumulation of mitochondria at the site of oligodendrocyte-bead adhesion. Here we show that netrin-1 increases the redistribution of SNPH to oligodendrocyte processes during the expansion of myelin basic protein-positive membranes and that SNPH clusters at the oligodendrocyte plasma membrane at sites of adhesion with netrin-1-coated beads where mitochondria are retained. These findings suggest roles for SNPH in oligodendrocytes regulating netrin-1-mediated mitochondrial docking and myelin membrane expansion.


Asunto(s)
Proteína Básica de Mielina , Vaina de Mielina , Vaina de Mielina/metabolismo , Proteína Básica de Mielina/metabolismo , Netrina-1/metabolismo , Oligodendroglía/metabolismo , Mitocondrias/metabolismo , Lípidos
6.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 1-8, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953591

RESUMEN

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets. We previously described a motoneuron-specific death pathway elicited by the Fas death receptor, whereby vulnerable ALS motoneurons show an exacerbated sensitivity to Fas activation. However, the mechanisms that drive the loss of SMA motoneurons remains poorly understood. Here, we describe an in vitro model of SMA-associated degeneration using primary motoneurons derived from Smn2B/- SMA mice and show that Fas activation selectively triggers death of the proximal motoneurons. Fas-induced death of SMA motoneurons has the molecular signature of the motoneuron-selective Fas death pathway that requires activation of p38 kinase, caspase-8, -9 and -3 as well as upregulation of collapsin response mediator protein 4 (CRMP4). In addition, Rho-associated Kinase (ROCK) is required for Fas recruitment. Remarkably, we found that exogenous activation of Fas also promotes axonal elongation in both wildtype and SMA motoneurons. Axon outgrowth of motoneurons promoted by Fas requires the activity of ERK, ROCK and caspases. This work defines a dual role of Fas signaling in motoneurons that can elicit distinct responses from cell death to axonal growth.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Axones/patología
7.
Gene Ther ; 29(9): 544-554, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35462564

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy and clinical trials use a single intravenous bolus of the blood-brain-barrier penetrant scAAV9-cba-SMN by either systemic or central nervous system (CNS) delivery, resulting in impressive amelioration of the clinical phenotype but not a complete cure. The impact of scAAV9-cba-SMN treatment regimens on the CNS as well as on specific peripheral organs is yet to be described in a comparative manner. Therefore, we injected SMA mice with scAAV9-cba-SMN either intravenously (IV) for peripheral SMN restoration or intracerebroventricularly (ICV) for CNS-focused SMN restoration. In our system, ICV injections increased SMN in peripheral organs and the CNS while IV administration increased SMN in peripheral tissues only, largely omitting the CNS. Both treatments rescued several peripheral phenotypes while only ICV injections were neuroprotective. Surprisingly, both delivery routes resulted in a robust rescue effect on survival, weight, and motor function, which in IV-treated mice relied on peripheral SMN restoration but not on targeting the motor neurons. This demonstrates the independent contribution of peripheral organs to SMA pathology and suggests that treatments should not be restricted to motor neurons.


Asunto(s)
Dependovirus , Atrofia Muscular Espinal , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/genética , Ratones , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
8.
Glia ; 70(7): 1337-1358, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35373853

RESUMEN

Survival motor neuron (SMN) protein deficiency results in loss of alpha motor neurons and subsequent muscle atrophy in patients with spinal muscular atrophy (SMA). Reactive microglia have been reported in SMA mice and depleting microglia rescues the number of proprioceptive synapses, suggesting a role in SMA pathology. Here, we explore the contribution of lymphocytes on microglia reactivity in SMA mice and investigate how SMN deficiency alters the reactive profile of human induced pluripotent stem cell (iPSC)-derived microglia. We show that microglia adopt a reactive morphology in spinal cords of SMA mice. Ablating lymphocytes did not alter the reactive morphology of SMA microglia and did not improve the survival or motor function of SMA mice, indicating limited impact of peripheral immune cells on the SMA phenotype. We found iPSC-derived SMA microglia adopted an amoeboid morphology and displayed a reactive transcriptome profile, increased cell migration, and enhanced phagocytic activity. Importantly, cell morphology and electrophysiological properties of motor neurons were altered when they were incubated with conditioned media from SMA microglia. Together, these data reveal that SMN-deficient microglia adopt a reactive profile and exhibit an exaggerated inflammatory response with potential impact on SMA neuropathology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Deficiencia de Proteína , Animales , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Deficiencia de Proteína/metabolismo , Deficiencia de Proteína/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
9.
J Neurochem ; 162(4): 310-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536759

RESUMEN

Oligodendrocytes are the glial cells responsible for the formation of myelin around axons of the central nervous system (CNS). Myelin is an insulating layer that allows electrical impulses to transmit quickly and efficiently along neurons. If myelin is damaged, as in chronic demyelinating disorders such as multiple sclerosis (MS), these impulses slow down. Remyelination by oligodendrocytes is often ineffective in MS, in part because of the failure of oligodendrocyte precursor cells (OPCs) to differentiate into mature, myelinating oligodendrocytes. The process of oligodendrocyte differentiation is tightly controlled by several regulatory networks involving transcription factors, intracellular signaling pathways, and extrinsic cues. Understanding the factors that regulate oligodendrocyte development is essential for the discovery of new therapeutic strategies capable of enhancing remyelination. Over the past decade, microRNAs (miRNAs) have emerged as key regulators of oligodendrocyte development, exerting effects on cell specification, proliferation, differentiation, and myelination. This article will review the role of miRNAs on oligodendrocyte biology and discuss their potential as promising therapeutic tools for remyelination.


Asunto(s)
MicroARNs , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Remielinización , Diferenciación Celular/fisiología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología
10.
J Cell Physiol ; 236(2): 997-1012, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32602617

RESUMEN

The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR-145-5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR-145-5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR-145-5p knockdown OPCs. Further, knockdown of miR-145-5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL-specific genes targeted by miR-145-5p that exhibited upregulation with miR-145-5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR-145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR-145-5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR-145-5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR-145-5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as-yet-unidentified mechanisms. These findings clarify the need for differential regulation of miR-145-5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR-145-5p is dysregulated.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/genética , Vaina de Mielina/genética , Células Precursoras de Oligodendrocitos/patología , Animales , Células Cultivadas , Células HEK293 , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Neurogénesis/genética , Oligodendroglía/patología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
11.
Biochem Cell Biol ; 99(3): 364-373, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33347391

RESUMEN

The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.


Asunto(s)
Autofagosomas/patología , Autofagia , Distonina/fisiología , Endosomas/patología , Mutación con Pérdida de Función , Lisosomas/patología , Neuronas/patología , Animales , Autofagosomas/metabolismo , Endosomas/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
12.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072857

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.


Asunto(s)
Terapia Genética , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Fenotipo
13.
Glia ; 68(5): 859-877, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31441132

RESUMEN

Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.


Asunto(s)
Esclerosis Múltiple/patología , Vaina de Mielina/patología , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/patología , Remielinización/fisiología , Animales , Movimiento Celular/fisiología , Progresión de la Enfermedad , Ejercicio Físico/fisiología , Humanos , Microbiota
14.
Hum Mol Genet ; 27(20): 3598-3611, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982604

RESUMEN

Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.


Asunto(s)
Trastornos Distónicos/genética , Distonina/genética , Regulación de la Expresión Génica , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Trastornos Distónicos/metabolismo , Distonina/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Ratones , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas , Regulación hacia Arriba
15.
J Proteome Res ; 18(8): 3042-3051, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31262178

RESUMEN

Spinal muscular atrophy (SMA) is a human genetic disorder characterized by muscle weakness, muscle atrophy, and death of motor neurons. SMA is caused by mutations or deletions in a gene called survival motor neuron 1 (SMN1). SMN1 is a housekeeping gene, but the most prominent pathologies in SMA are atrophy of myofibers and death of motor neurons. Further, degeneration of neuromuscular junctions, of synapses, and of axonal regions are features of SMA disease. Here, we have investigated the proteome dynamics of central synapses in P14 Smn2B/- mice, a model of SMA. Label-free quantitative proteomics on isolated synaptosomes from spinal cords of these animals identified 2030 protein groups. Statistical data analysis revealed 65 specific alterations in the proteome of the central synapses at the early onset stage of disease. Functional analysis of the dysregulated proteins indicated a significant enrichment of proteins associated with mitochondrial dynamics, cholesterol biogenesis, and protein clearance. These pathways represent potential targets for therapy development with the goal of providing stability to the central synapses, thereby preserving neuronal integrity in the context of SMA disease. Data are available via ProteomeXchange with identifier PXD012850.


Asunto(s)
Atrofia Muscular Espinal/genética , Proteoma/genética , Proteómica , Sinaptosomas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Sinapsis/genética , Sinapsis/patología , Sinaptosomas/patología
16.
Hum Mol Genet ; 26(4): 801-819, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28108555

RESUMEN

Spinal muscular atrophy (SMA) has long been solely considered a neurodegenerative disorder. However, recent work has highlighted defects in many other cell types that could contribute to disease aetiology. Interestingly, the immune system has never been extensively studied in SMA. Defects in lymphoid organs could exacerbate disease progression by neuroinflammation or immunodeficiency. Smn depletion led to severe alterations in the thymus and spleen of two different mouse models of SMA. The spleen from Smn depleted mice was dramatically smaller at a very young age and its histological architecture was marked by mislocalization of immune cells in the Smn2B/- model mice. In comparison, the thymus was relatively spared in gross morphology but showed many histological alterations including cortex thinning in both mouse models at symptomatic ages. Thymocyte development was also impaired as evidenced by abnormal population frequencies in the Smn2B/- thymus. Cytokine profiling revealed major changes in different tissues of both mouse models. Consistent with our observations, we found that survival motor neuron (Smn) protein levels were relatively high in lymphoid organs compared to skeletal muscle and spinal cord during postnatal development in wild type mice. Genetic introduction of one copy of the human SMN2 transgene was enough to rescue splenic and thymic defects in Smn2B/- mice. Thus, Smn is required for the normal development of lymphoid organs, and altered immune function may contribute to SMA disease pathogenesis.


Asunto(s)
Atrofia Muscular Espinal/inmunología , Proteína 1 para la Supervivencia de la Neurona Motora/inmunología , Timocitos/inmunología , Timo/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Timocitos/patología , Timo/patología
17.
Hum Mol Genet ; 26(2): 282-292, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069797

RESUMEN

The childhood neurodegenerative disease spinal muscular atrophy (SMA) is caused by loss-of-function mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene resulting in insufficient levels of survival motor neuron (SMN) protein. Classically considered a motor neuron disease, increasing evidence now supports SMA as a multi-system disorder with phenotypes discovered in cortical neuron, astrocyte, and Schwann cell function within the nervous system. In this study, we sought to determine whether Smn was critical for oligodendrocyte (OL) development and central nervous system myelination. A mouse model of severe SMA was used to assess OL growth, migration, differentiation and myelination. All aspects of OL development and function studied were unaffected by Smn depletion. The tremendous impact of Smn depletion on a wide variety of other cell types renders the OL response unique. Further investigation of the OLs derived from SMA models may reveal disease modifiers or a compensatory mechanism allowing these cells to flourish despite the reduced levels of this multifunctional protein.


Asunto(s)
Atrofia Muscular Espinal/genética , Neurogénesis/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/fisiopatología , Fibras Nerviosas Mielínicas/patología , Oligodendroglía/patología , Fenotipo , Células de Schwann/patología , Médula Espinal/metabolismo , Médula Espinal/patología
18.
Hum Mol Genet ; 25(20): 4494-4506, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28172892

RESUMEN

Spinal muscular atrophy (SMA) is caused by mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene in humans. Modifiers of the SMA symptoms have been identified and genetic background has a substantial effect in the phenotype and survival of the severe mouse model of SMA. Previously, we generated the less severe Smn2B/- mice on a mixed genetic background. To assess the phenotype of Smn deficiency on a pure genetic background, we produced Smn2B/2B congenic mice on either the C57BL/6 (BL6) or FVB strain background and characterized them at the 6th generation by breeding to Smn+/- mice. Smn2B/- mice from these crosses were evaluated for growth, survival, muscle atrophy, motor neuron loss, motor behaviour, and neuromuscular junction pathology. FVB Smn2B/- mice had a shorter life span than BL6 Smn2B/- mice (median of 19 days vs. 25 days). Similarly, all other defects assessed occurred at earlier stages in FVB Smn2B/-mice when compared to BL6 Smn2B/-mice. However, there were no differences in Smn protein levels in the spinal cords of these mice. Interestingly, levels of Plastin 3, a putative modifier of SMA, were significantly induced in spinal cords of BL6 Smn2B/- mice but not of FVB Smn2B/-mice. Our studies demonstrate that the phenotype in Smn2B/-mice is more severe in the FVB background than in the BL6 background, which could potentially be explained by the differential induction of genetic modifiers.


Asunto(s)
Modelos Animales de Enfermedad , Antecedentes Genéticos , Atrofia Muscular Espinal/genética , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos , Neuronas Motoras , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Unión Neuromuscular
19.
BMC Mol Biol ; 18(1): 19, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28728573

RESUMEN

BACKGROUND: RBM10 is an RNA binding protein involved in message stabilization and alternative splicing regulation. The objective of the research described herein was to identify novel targets of RBM10-regulated splicing. To accomplish this, we downregulated RBM10 in human cell lines, using small interfering RNAs, then monitored alternative splicing, using a reverse transcription-PCR screening platform. RESULTS: RBM10 knockdown (KD) provoked alterations in splicing events in 10-20% of the pre-mRNAs, most of which had not been previously identified as RBM10 targets. Hierarchical clustering of the genes affected by RBM10 KD revealed good conservation of alternative exon inclusion or exclusion across cell lines. Pathway annotation showed RAS signaling to be most affected by RBM10 KD. Of particular interest was the finding that splicing of SMN pre-mRNA, encoding the survival of motor neuron (SMN) protein, was influenced by RBM10 KD. Inhibition of RBM10 resulted in preferential expression of the full-length, exon 7 retaining, SMN transcript in four cancer cell lines and one normal skin fibroblast cell line. SMN protein is expressed from two genes, SMN1 and SMN2, but the SMN1 gene is homozygously disrupted in people with spinal muscular atrophy; as a consequence, all of the SMN that is expressed in people with this disease is from the SMN2 gene. Expression analyses using primary fibroblasts from control, carrier and spinal muscle atrophy donors demonstrated that RBM10 KD resulted in preferential expression of the full-length, exon 7 retaining, SMN2 transcript. At the protein level, upregulation of the full-length SMN2 was also observed. Re-expression of RBM10, in a stable RBM10 KD cancer cell line, correlated with a reversion of the KD effect, demonstrating specificity. CONCLUSION: Our work has not only expanded the number of pre-mRNA targets for RBM10, but identified RBM10 as a novel regulator of SMN2 alternative inclusion.


Asunto(s)
Precursores del ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Línea Celular , Análisis por Conglomerados , Biología Computacional/métodos , Exones , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Reproducibilidad de los Resultados , Transducción de Señal , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteínas ras/metabolismo
20.
J Neurochem ; 136(3): 536-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26614167

RESUMEN

Integrin-linked kinase (ILK), a focal adhesion protein, brokers the link between cytoskeleton, cell membrane, and extracellular environment. Here, we demonstrate a role for ILK in laminin-2-mediated adhesion in primary murine oligodendrocytes (OLs) - with ILK loss leading to severe defects in process branching and outgrowth. These defects were partially recovered when the ILK-depleted OLs were instead grown on the non-integrin-activating substrate poly-l-lysine. Intriguingly, ILK loss on the neutral poly-l-lysine substrate led to swelling at the tips of OL processes, which we identified as enlarged growth cones. Employing the bloated ILK-depleted growth cones as template, we demonstrate the appearance of distinct cytoskeletal domains within OL growth cones bearing classic neuronal growth cone architecture. Further, microtubule organization was severely perturbed following ILK loss, with centripetal microtubule looping and failure to bundle occurring in a laminin-2-independent manner. Together, our work highlights differences in specific aspects of OL biology as driven by laminin-2-dependent or independent ILK governed mechanisms. We also reinforce the idea of OLs as growth cone bearing cells and describe the neuronal-like cytoskeleton therein. Finally, we demonstrate a role for ILK in OL growth cone maturation through microtubule regulation, the loss of which translates to decreased process length and myelin production capacity. We describe herein how different substrates fundamentally alter the oligodendrocyte's response to loss of integrin-linked kinase (ILK). On laminin-2 (Ln-2), ILK-depleted oligodendrocytes appear stunted and malformed, while on the non-integrin-activating substrate PLL branching and membrane formation are restored. We also reinforce the idea of oligodendrocytes as growth cone-bearing cells, detailing the growth cone's cytoskeletal architecture. Strikingly, loss of ILK on poly-l-lysine leads to growth cone swelling, the structure's size and motility rendered less dynamic. Together, our work helps reconcile the phenotypic discrepancy between ILK loss in vitro and in vivo, informs on the oligodendrocyte's growth cone, and ascribes a role for ILK in growth cone dynamics.


Asunto(s)
Adhesión Celular/fisiología , Citoesqueleto/metabolismo , Conos de Crecimiento/fisiología , Oligodendroglía/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Actinas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Glicoproteína Asociada a Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Proteínas Serina-Treonina Quinasas/genética , Factores de Tiempo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA