Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511603

RESUMEN

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Asunto(s)
Núcleo de Edinger-Westphal , Enfermedad de Parkinson , Animales , Ratas , Ganglios Basales/metabolismo , Dopamina/metabolismo , Regulación hacia Abajo , Núcleo de Edinger-Westphal/metabolismo , Levodopa/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Rotenona/metabolismo , Sustancia Negra/metabolismo
2.
J Neuroinflammation ; 19(1): 31, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109869

RESUMEN

BACKGROUND: The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS: Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS: In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS: Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.


Asunto(s)
Núcleo de Edinger-Westphal , Enfermedad de Parkinson , Animales , Ansiedad , Humanos , Neuronas/fisiología , Ratas , Urocortinas/genética
3.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233039

RESUMEN

Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.


Asunto(s)
Fluoxetina , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Epigénesis Genética , Fluoxetina/farmacología , Hipocampo , Histonas/genética , Lisina/genética , Masculino , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Corteza Prefrontal , Reproducibilidad de los Resultados
4.
Int J Mol Sci ; 18(3)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28335564

RESUMEN

The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has two active forms, PACAP1-27 and PACAP1-38. Among the well-established actions are PACAP's neurotrophic and neuroprotective effects, which have also been proven in models of different retinopathies. The route of delivery is usually intravitreal in studies proving PACAP's retinoprotective effects. Recently, we have shown that PACAP1-27 delivered as eye drops in benzalkonium-chloride was able to cross the ocular barriers and exert retinoprotection in ischemia. Since PACAP1-38 is the dominant form of the naturally occurring PACAP, our aim was to investigate whether the longer form is also able to cross the barriers and exert protective effects in permanent bilateral common carotid artery occlusion (BCCAO), a model of retinal hypoperfusion. Our results show that radioactive PACAP1-38 eye drops could effectively pass through the ocular barriers to reach the retina. Routine histological analysis and immunohistochemical evaluation of the Müller glial cells revealed that PACAP1-38 exerted retinoprotective effects. PACAP1-38 attenuated the damage caused by hypoperfusion, apparent in almost all retinal layers, and it decreased the glial cell overactivation. Overall, our results confirm that PACAP1-38 given in the form of eye drops is a novel protective therapeutic approach to treat retinal diseases.


Asunto(s)
Isquemia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacocinética , Fragmentos de Péptidos/farmacocinética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacocinética , Enfermedades de la Retina/tratamiento farmacológico , Vasos Retinianos/patología , Animales , Ratones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Soluciones Oftálmicas , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Ratas , Ratas Wistar , Retina/metabolismo , Vasos Retinianos/metabolismo
5.
Front Aging Neurosci ; 14: 862098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592695

RESUMEN

FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.

6.
Front Endocrinol (Lausanne) ; 13: 995900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213293

RESUMEN

According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.


Asunto(s)
Depresión , Fluoxetina , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Masculino , Ratones , Carbonato de Calcio , Hormona Liberadora de Corticotropina/metabolismo , Depresión/tratamiento farmacológico , Depresión/genética , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Histonas , Oxigenasas de Función Mixta , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/genética , Tirosina , Urocortinas/metabolismo
7.
Front Aging Neurosci ; 10: 248, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186150

RESUMEN

The hypothalamus-pituitary-adrenal axis (HPA) is the main regulator of the stress response. The key of the HPA is the parvocellular paraventricular nucleus of the hypothalamus (pPVN) controlled by higher-order limbic stress centers. The reactivity of the HPA axis is considered to be a function of age, but to date, little is known about the background of this age-dependency. Sporadic literature data suggest that the stress sensitivity as assessed by semi-quantitation of the neuronal activity marker c-Fos may also be influenced by age. Here, we aimed at investigating the HPA activity and c-Fos immunoreactivity 2 h after the beginning of a single 60 min acute restraint stress in eight age groups of male Wistar rats. We hypothesized that the function of the HPA axis (i.e., pPVN c-Fos and blood corticosterone (CORT) level), the neuronal activity of nine stress-related limbic areas (i.e., magnocellular PVN (mPVN), medial (MeA), central (CeA), basolateral nuclei of the amygdala, the oval (ovBNST), dorsolateral (dlBNST), dorsomedial (dmBNST), ventral and fusiform (fuBNST) divisions of the bed nucleus of the stria terminalis (BNST)), and two brainstem stress centers such as the centrally projecting Edinger-Westphal nucleus (cpEW) and dorsal raphe nucleus (DR) show age dependency in their c-Fos response. The somatosensory barrel cortex area (S1) was evaluated to test whether the age dependency is specific for stress-centers. Our results indicate that the stress-induced rise in blood CORT titer was lower in young age reflecting relatively low HPA activity. All 12 stress-related brain areas showed c-Fos response that peaked at 2 months of age. The magnitude of c-Fos immunoreactivity correlated negatively with age in seven regions (MeA, CeA, ovBNST, dlBNST, dmBNST, fuBNST and pPVN). Unexpectedly, the CeA, ovBNST and cpEW showed a considerable basal c-Fos expression in 1-month-old rats which decreased with age. The S1 showed a U-shaped age-related dynamics in contrast to the decline observed in stress centers. We conclude that the age- and brain area dependent dynamics in stress-induced neuronal activity pattern may contribute to the age dependance of the stress reactivity. Further studies are in progress to determine the neurochemical identity of neurons showing age-dependent basal and/or stress-induced c-Fos expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA