Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Evol ; 38(7): 3004-3021, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33739420

RESUMEN

Many evolutionary comparative methods seek to identify associations between phenotypic traits or between traits and genotypes, often with the goal of inferring potential functional relationships between them. Comparative genomics methods aimed at this goal measure the association between evolutionary changes at the genetic level with traits evolving convergently across phylogenetic lineages. However, these methods have complex statistical behaviors that are influenced by nontrivial and oftentimes unknown confounding factors. Consequently, using standard statistical analyses in interpreting the outputs of these methods leads to potentially inaccurate conclusions. Here, we introduce phylogenetic permulations, a novel statistical strategy that combines phylogenetic simulations and permutations to calculate accurate, unbiased P values from phylogenetic methods. Permulations construct the null expectation for P values from a given phylogenetic method by empirically generating null phenotypes. Subsequently, empirical P values that capture the true statistical confidence given the correlation structure in the data are directly calculated based on the empirical null expectation. We examine the performance of permulation methods by analyzing both binary and continuous phenotypes, including marine, subterranean, and long-lived large-bodied mammal phenotypes. Our results reveal that permulations improve the statistical power of phylogenetic analyses and correctly calibrate statements of confidence in rejecting complex null distributions while maintaining or improving the enrichment of known functions related to the phenotype. We also find that permulations refine pathway enrichment analyses by correcting for nonindependence in gene ranks. Our results demonstrate that permulations are a powerful tool for improving statistical confidence in the conclusions of phylogenetic analysis when the parametric null is unknown.


Asunto(s)
Técnicas Genéticas , Fenotipo , Filogenia , Animales , Humanos
2.
Biochem J ; 478(17): 3205-3220, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34397090

RESUMEN

Recent advances in genome sequencing have led to the identification of new ion and metabolite transporters, many of which have not been characterized. Due to the variety of subcellular localizations, cargo and transport mechanisms, such characterization is a daunting task, and predictive approaches focused on the functional context of transporters are very much needed. Here we present a case for identifying a transporter localization using evolutionary rate covariation (ERC), a computational approach based on pairwise correlations of amino acid sequence evolutionary rates across the mammalian phylogeny. As a case study, we find that poorly characterized transporter SLC30A9 (ZnT9) coevolves with several components of the mitochondrial oxidative phosphorylation chain, suggesting mitochondrial localization. We confirmed this computational finding experimentally using recombinant human SLC30A9. SLC30A9 loss caused zinc mishandling in the mitochondria, suggesting that under normal conditions it acts as a zinc exporter. We therefore propose that ERC can be used to predict the functional context of novel transporters and other poorly characterized proteins.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biología Computacional/métodos , Evolución Molecular , Mitocondrias/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Mitocondriales/metabolismo , Filogenia , Transfección , Secuenciación Completa del Genoma/métodos , Zinc/metabolismo
3.
Mol Ther ; 28(8): 1846-1857, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32416058

RESUMEN

CRISPR-Cas9 provides a tool to treat autosomal dominant disease by non-homologous end joining (NHEJ) gene disruption of the mutant allele. In order to discriminate between wild-type and mutant alleles, Streptococcus pyogenes Cas9 (SpCas9) must be able to detect a single nucleotide change. Allele-specific editing can be achieved by using either a guide-specific approach, in which the missense mutation is found within the guide sequence, or a protospacer-adjacent motif (PAM)-specific approach, in which the missense mutation generates a novel PAM. While both approaches have been shown to offer allele specificity in certain contexts, in cases where numerous missense mutations are associated with a particular disease, such as TGFBI (transforming growth factor ß-induced) corneal dystrophies, it is neither possible nor realistic to target each mutation individually. In this study, we demonstrate allele-specific CRISPR gene editing independent of the disease-causing mutation that is capable of achieving complete allele discrimination, and we propose it as a targeting approach for autosomal dominant disease. Our approach utilizes natural variants in the target region that contain a PAM on one allele that lies in cis with the causative mutation, removing the constraints of a mutation-dependent approach. Our innovative patient-specific guide design approach takes into account the patient's individual genetic make-up, allowing on- and off-target activity to be assessed in a personalized manner.


Asunto(s)
Alelos , Sistemas CRISPR-Cas , Edición Génica , Genes Dominantes , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética , Mutación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular , Genómica/métodos , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple , Medicina de Precisión , ARN Guía de Kinetoplastida , Factor de Crecimiento Transformador beta1/genética
4.
Mol Biol Evol ; 36(8): 1817-1830, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077321

RESUMEN

Identifying genomic elements underlying phenotypic adaptations is an important problem in evolutionary biology. Comparative analyses learning from convergent evolution of traits are gaining momentum in accurately detecting such elements. We previously developed a method for predicting phenotypic associations of genetic elements by contrasting patterns of sequence evolution in species showing a phenotype with those that do not. Using this method, we successfully demonstrated convergent evolutionary rate shifts in genetic elements associated with two phenotypic adaptations, namely the independent subterranean and marine transitions of terrestrial mammalian lineages. Our original method calculates gene-specific rates of evolution on branches of phylogenetic trees using linear regression. These rates represent the extent of sequence divergence on a branch after removing the expected divergence on the branch due to background factors. The rates calculated using this regression analysis exhibit an important statistical limitation, namely heteroscedasticity. We observe that the rates on branches that are longer on average show higher variance, and describe how this problem adversely affects the confidence with which we can make inferences about rate shifts. Using a combination of data transformation and weighted regression, we have developed an updated method that corrects this heteroscedasticity in the rates. We additionally illustrate the improved performance offered by the updated method at robust detection of convergent rate shifts in phylogenetic trees of protein-coding genes across mammals, as well as using simulated tree data sets. Overall, we present an important extension to our evolutionary-rates-based method that performs more robustly and consistently at detecting convergent shifts in evolutionary rates.


Asunto(s)
Evolución Molecular , Técnicas Genéticas , Algoritmos , Fenotipo , Filogenia , Programas Informáticos
5.
Bioinformatics ; 35(22): 4815-4817, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31192356

RESUMEN

MOTIVATION: When different lineages of organisms independently adapt to similar environments, selection often acts repeatedly upon the same genes, leading to signatures of convergent evolutionary rate shifts at these genes. With the increasing availability of genome sequences for organisms displaying a variety of convergent traits, the ability to identify genes with such convergent rate signatures would enable new insights into the molecular basis of these traits. RESULTS: Here we present the R package RERconverge, which tests for association between relative evolutionary rates of genes and the evolution of traits across a phylogeny. RERconverge can perform associations with binary and continuous traits, and it contains tools for visualization and enrichment analyses of association results. AVAILABILITY AND IMPLEMENTATION: RERconverge source code, documentation and a detailed usage walk-through are freely available at https://github.com/nclark-lab/RERconverge. Datasets for mammals, Drosophila and yeast are available at https://bit.ly/2J2QBnj. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Animales , Estudio de Asociación del Genoma Completo , Fenotipo , Filogenia
6.
J Psychiatr Res ; 174: 332-339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697012

RESUMEN

Electroencephalographic (EEG) deficits in slow wave activity or Delta power (0.5-4 Hz) indicate disturbed sleep homeostasis and are hallmarks of depression. Sleep homeostasis is linked to restorative sleep and potential antidepressant response via non-rapid eye movement (NREM) slow wave sleep (SWS) during which neurons undergo essential repair and rejuvenation. Decreased Low Delta power (0.5-2 Hz) was previously reported in individuals with depression. This study investigated power levels in the Low Delta (0.5-<2 Hz), High Delta (2-4 Hz), and Total Delta (0.5-4 Hz) bands and their association with age, sex, and disrupted sleep in treatment-resistant depression (TRD). Mann-Whitney U tests were used to compare the nightly progressions of Total Delta, Low Delta, and High Delta in 100 individuals with TRD and 24 healthy volunteers (HVs). Polysomnographic parameters were also examined, including Total Sleep Time (TST), Sleep Efficiency (SE), and Wake after Sleep Onset (WASO). Individuals with TRD had lower Delta power during the first NREM episode (NREM1) than HVs. The deficiency was observed in the Low Delta band versus High Delta. Females with TRD had higher Delta power than males during the first NREM1 episode, with the most noticeable sex difference observed in Low Delta. In individuals with TRD, Low Delta power correlated with WASO and SE, and High Delta correlated with WASO. Low Delta power deficits in NREM1 were observed in older males with TRD, but not females. These results provide compelling evidence for a link between age, sex, Low Delta power, sleep homeostasis, and non-restorative sleep in TRD.


Asunto(s)
Ritmo Delta , Trastorno Depresivo Resistente al Tratamiento , Electroencefalografía , Polisomnografía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Ritmo Delta/fisiología , Anciano , Caracteres Sexuales , Adulto Joven , Trastornos del Sueño-Vigilia/fisiopatología , Sueño/fisiología
7.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422184

RESUMEN

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje Automático
8.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106136

RESUMEN

Comparative genomics approaches seek to associate evolutionary genetic changes with the evolution of phenotypes across a phylogeny. Many of these methods, including our evolutionary rates based method, RERconverge, lack the capability of analyzing non-ordinal, multicategorical traits. To address this limitation, we introduce an expansion to RERconverge that associates shifts in evolutionary rates with the convergent evolution of multi-categorical traits. The categorical RERconverge expansion includes methods for performing categorical ancestral state reconstruction, statistical tests for associating relative evolutionary rates with categorical variables, and a new method for performing phylogenetic permulations on multi-categorical traits. In addition to demonstrating our new method on a three-category diet phenotype, we compare its performance to naive pairwise binary RERconverge analyses and two existing methods for comparative genomic analyses of categorical traits: phylogenetic simulations and a phylogenetic signal based method. We also present a diagnostic analysis of the new permulations approach demonstrating how the method scales with the number of species and the number of categories included in the analysis. Our results show that our new categorical method outperforms phylogenetic simulations at identifying genes and enriched pathways significantly associated with the diet phenotype and that the new ancestral reconstruction drives an improvement in our ability to capture diet-related enriched pathways. Our categorical permulations were able to account for non-uniform null distributions and correct for non-independence in gene rank during pathway enrichment analysis. The categorical expansion to RERconverge will provide a strong foundation for applying the comparative method to categorical traits on larger data sets with more species and more complex trait evolution.

9.
Science ; 380(6643): eabn3943, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104599

RESUMEN

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Asunto(s)
Euterios , Evolución Molecular , Animales , Femenino , Humanos , Secuencia Conservada/genética , Euterios/genética , Genoma Humano
10.
Elife ; 112022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36342464

RESUMEN

Body hair is a defining mammalian characteristic, but several mammals, such as whales, naked mole-rats, and humans, have notably less hair. To find the genetic basis of reduced hair quantity, we used our evolutionary-rates-based method, RERconverge, to identify coding and noncoding sequences that evolve at significantly different rates in so-called hairless mammals compared to hairy mammals. Using RERconverge, we performed a genome-wide scan over 62 mammal species using 19,149 genes and 343,598 conserved noncoding regions. In addition to detecting known and potential novel hair-related genes, we also discovered hundreds of putative hair-related regulatory elements. Computational investigation revealed that genes and their associated noncoding regions show different evolutionary patterns and influence different aspects of hair growth and development. Many genes under accelerated evolution are associated with the structure of the hair shaft itself, while evolutionary rate shifts in noncoding regions also included the dermal papilla and matrix regions of the hair follicle that contribute to hair growth and cycling. Genes that were top ranked for coding sequence acceleration included known hair and skin genes KRT2, KRT35, PKP1, and PTPRM that surprisingly showed no signals of evolutionary rate shifts in nearby noncoding regions. Conversely, accelerated noncoding regions are most strongly enriched near regulatory hair-related genes and microRNAs, such as mir205, ELF3, and FOXC1, that themselves do not show rate shifts in their protein-coding sequences. Such dichotomy highlights the interplay between the evolution of protein sequence and regulatory sequence to contribute to the emergence of a convergent phenotype.


Whales, elephants, humans, and naked mole-rats all share a somewhat rare trait for mammals: their bodies are covered with little to no hair. The common ancestors of each of these species are considerably hairier which must mean that hairlessness evolved multiple times independently. When distantly related species evolve similar traits, it can be interpreted as a certain aspect of their evolution repeating itself. This process is called 'convergent evolution' and may provide insights about how different species were able to arrive at the same outcome. One possibility is that they have undergone similar genetic changes such as turning on or off key genes that play a role in the trait's development. Kowalczyk et al. set out to identify what genetic changes may have contributed to the convergent evolution of hairlessness in unrelated species of mammals. By looking at the genomes of 62 mammalian species, they hoped to link specific genomic elements to the origins of the hairless trait. The genetic sequences under investigation included nearly 20,000 genes that encode information about how to make proteins, as well as 350,000 regulatory sequences composed of non-coding DNA, which specify when and how genes are activated. This marks the first time genetic mechanisms behind various hair traits have been studied in such a diverse group of mammals. Using a computational approach, Kowalczyk et al. identified parts of the genome that have evolved similarly in mammalian species that have lost their hair. They found that genes and regulatory sequences, that had been previously associated with hair growth, accumulated mutations at significantly different rates in hairless versus hairy mammals. This indicates that these regions associated hair growth are also related to evolution of hairlessness. This includes several genes that encode keratin proteins, the main material that makes up hair. The team also reported an increased rate of evolution in genes and regulatory sequences that were not previously known to be involved in hair growth or hairlessness in mammals. Together these results suggest that a specific set of genetic changes have occurred several times in different mammalian lineages to drive the evolution of hairlessness in unrelated species. Kowalczyk et al. describe the parts of the genome that may be involved in controlling hair growth. Once their findings are validated, they could be used to develop treatments for hair loss in humans. Additionally, their computational approach could be applied to other examples of convergent evolution where genomic data is available, allowing scientists to better understand how the same traits evolve in different species.


Asunto(s)
Hominidae , MicroARNs , Animales , Humanos , Evolución Molecular , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Hominidae/genética , Ballenas , Secuencia Conservada
11.
Sci Rep ; 12(1): 1173, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064150

RESUMEN

The urgent need to scale up testing capacity during the COVID-19 pandemic has prompted the rapid development of point-of-care diagnostic tools such as lateral flow immunoassays (LFIA) for large-scale community-based rapid testing. However, studies of how the general public perform when using LFIA tests in different environmental settings are scarce. This user experience (UX) study of 264 participants in Northern Ireland aimed to gather a better understanding of how self-administered LFIA tests were performed by the general public at home. The UX performance was assessed via analysis of a post-test questionnaire including 30 polar questions and 11 7-point Likert scale questions, which covers the multidimensional aspects of UX in terms of ease of use, effectiveness, efficiency, accuracy and satisfaction. Results show that 96.6% of participants completed the test with an overall average UX score of 95.27% [95% confidence interval (CI) 92.71-97.83%], which suggests a good degree of user experience and effectiveness. Efficiency was assessed based on the use of physical resources and human support received, together with the mental effort of self-administering the test measured via NASA Task Load Index (TLX). The results for six TLX subscales show that the participants scored the test highest for mental demand and lowest for physical demand, but the average TLX score suggests that the general public have a relatively low level of mental workload when using LFIA self-testing at home. Five printed LFIA testing results (i.e. the 'simulated' results) were used as the ground truth to assess the participant's performance in interpreting the test results. The overall agreement (accuracy) was 80.63% [95% CI 75.21-86.05%] with a Kappa score 0.67 [95% CI 0.58-0.75] indicating substantial agreement. The users scored lower in confidence when interpreting test results that were weak positive cases (due to the relatively low signal intensity in the test-line) compared to strong positive cases. The end-users also found that the kit was easier to use than they expected (p < 0.001) and 231 of 264 (87.5%) reported that the test kit would meet their requirements if they needed an antibody testing kit. The overall findings provide an insight into the opportunities for improving the design of self-administered SARS-CoV-2 antibody testing kits for the general public and to inform protocols for future UX studies of LFIA rapid test kits.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19 , Pandemias , Pruebas en el Punto de Atención , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , Niño , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad
12.
Sci Rep ; 11(1): 14026, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234188

RESUMEN

Lateral flow immunoassays are low cost, rapid and highly efficacious point-of-care devices, which have been used for SARS-CoV-2 antibody testing by professionals. However, there is a lack of understanding about how self-administered tests are used by the general public for mass testing in different environmental settings. The purpose of this study was to assess the user experience (UX) (including usability) of a self-testing kit to identify COVID-19 antibodies used by a representative sample of the public in their cars, which included 1544 participants in Northern Ireland. The results based on 5-point Likert ratings from a post-test questionnaire achieved an average UX score of 96.03% [95% confidence interval (CI) 95.05-97.01%], suggesting a good degree of user experience. The results of the Wilcoxon rank sum tests suggest that UX scores were independent of the user's age and education level although the confidence in this conclusion could be strengthened by including more participants aged younger than 18 and those with only primary or secondary education. The agreement between the test result as interpreted by the participant and the researcher was 95.85% [95% CI 94.85-96.85%], Kappa score 0.75 [95% CI 0.69-0.81] (indicating substantial agreement). Text analysis via the latent Dirichlet allocation model for the free text responses in the survey suggest that the user experience could be improved for blood-sample collection, by modifying the method of sample transfer to the test device and giving clearer instructions on how to interpret the test results. The overall findings provide an insight into the opportunities for improving the design of SARS-CoV-2 antibody testing kits to be used by the general public and therefore inform protocols for future user experience studies of point-of-care tests.


Asunto(s)
Anticuerpos Antivirales/análisis , Prueba de COVID-19/estadística & datos numéricos , Inmunoensayo/estadística & datos numéricos , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Niño , Escolaridad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Satisfacción del Paciente , Sistemas de Atención de Punto , Autoadministración , Sensibilidad y Especificidad , Adulto Joven
13.
BMJ Open ; 11(6): e048142, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187827

RESUMEN

OBJECTIVE: To evaluate the dynamics and longevity of the humoral immune response to SARS-CoV-2 infection and assess the performance of professional use of the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike protein IgG antibodies. DESIGN: Nationwide serological study. SETTING: Northern Ireland, UK, May 2020-February 2021. PARTICIPANTS: Plasma samples were collected from a diverse cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations and research studies (n=223) and through a convalescent plasma programme (n=183). Plasma donors (n=101) were followed with sequential samples over 11 months post-symptom onset. MAIN OUTCOME MEASURES: SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2 ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity, estimated using a three-reference standard system to establish a characterised panel of 330 positive and 488 negative SARS-CoV-2 IgG samples. RESULTS: We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post-infection, across a minimum of two laboratory immunoassays. On the known positive cohort, the UK-RTC AbC-19 LFIA showed a sensitivity of 97.58% (95.28% to 98.95%) and on known negatives, showed specificity of 99.59% (98.53 % to 99.95%). CONCLUSIONS: Through comprehensive analysis of a cohort of pre-pandemic and pandemic individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when assessed by EuroImmun ELISA, providing insight to antibody levels at later time points post-infection. We show good laboratory validation performance metrics for the AbC-19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-based setting.


Asunto(s)
COVID-19 , Inmunoglobulina G , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/terapia , Estudios Transversales , Humanos , Inmunización Pasiva , Inmunoensayo , Irlanda del Norte/epidemiología , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
14.
Elife ; 92020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32043462

RESUMEN

Although lifespan in mammals varies over 100-fold, the precise evolutionary mechanisms underlying variation in longevity remain unknown. Species-specific genetic changes have been observed in long-lived species including the naked mole-rat, bats, and the bowhead whale, but these adaptations do not generalize to other mammals. We present a novel method to identify associations between rates of protein evolution and continuous phenotypes across the entire mammalian phylogeny. Unlike previous analyses that focused on individual species, we treat absolute and relative longevity as quantitative traits and demonstrate that these lifespan traits affect the evolutionary constraint on hundreds of genes. Specifically, we find that genes related to cell cycle, DNA repair, cell death, the IGF1 pathway, and immunity are under increased evolutionary constraint in large and long-lived mammals. For mammals exceptionally long-lived for their body size, we find increased constraint in inflammation, DNA repair, and NFKB-related pathways. Strikingly, these pathways have considerable overlap with those that have been previously reported to have potentially adaptive changes in single-species studies, and thus would be expected to show decreased constraint in our analysis. This unexpected finding of increased constraint in many longevity-associated pathways underscores the power of our quantitative approach to detect patterns that generalize across the mammalian phylogeny.


Asunto(s)
Evolución Molecular , Longevidad/genética , Mamíferos/genética , Animales , Gatos , Bovinos , Cricetinae , Perros , Cobayas , Humanos , Ratones , Filogenia , Conejos , Ratas
15.
Science ; 361(6402): 591-594, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093596

RESUMEN

Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species' blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors' lipid metabolism and/or bloodstream oxidative environment affecting PON1's role in fatty acid oxidation. PON1 loss also eliminates marine mammals' main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.


Asunto(s)
Arildialquilfosfatasa/sangre , Arildialquilfosfatasa/genética , Cetáceos , Evolución Molecular , Metabolismo de los Lípidos , Fase I de la Desintoxicación Metabólica , Compuestos Organofosforados/metabolismo , Adaptación Biológica , Animales , Cetáceos/sangre , Cetáceos/clasificación , Cetáceos/genética , Exposición a Riesgos Ambientales , Aptitud Genética , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Compuestos Organofosforados/toxicidad , Oxidación-Reducción , Filogenia , Riesgo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA