Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931052

RESUMEN

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Variaciones en el Número de Copia de ADN , Humanos , Neuronas , Esquizofrenia/metabolismo , Sinapsis/metabolismo
2.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36792833

RESUMEN

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Asunto(s)
Anfetamina , Dopamina , Animales , Femenino , Ratones , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Anfetamina/farmacología , Inhibidores Enzimáticos/farmacología , Genotipo , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética
3.
PLoS Comput Biol ; 18(5): e1010011, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576194

RESUMEN

Genomewide association studies (GWAS) have identified a large number of loci associated with neuropsychiatric traits, however, understanding the molecular mechanisms underlying these loci remains difficult. To help prioritize causal variants and interpret their functions, computational methods have been developed to predict regulatory effects of non-coding variants. An emerging approach to variant annotation is deep learning models that predict regulatory functions from DNA sequences alone. While such models have been trained on large publicly available dataset such as ENCODE, neuropsychiatric trait-related cell types are under-represented in these datasets, thus there is an urgent need of better tools and resources to annotate variant functions in such cellular contexts. To fill this gap, we collected a large collection of neurodevelopment-related cell/tissue types, and trained deep Convolutional Neural Networks (ResNet) using such data. Furthermore, our model, called MetaChrom, borrows information from public epigenomic consortium to improve the accuracy via transfer learning. We show that MetaChrom is substantially better in predicting experimentally determined chromatin accessibility variants than popular variant annotation tools such as CADD and delta-SVM. By combining GWAS data with MetaChrom predictions, we prioritized 31 SNPs for Schizophrenia, suggesting potential risk genes and the biological contexts where they act. In summary, MetaChrom provides functional annotations of any DNA variants in the neuro-development context and the general method of MetaChrom can also be extended to other disease-related cell or tissue types.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Epigenómica/métodos , Aprendizaje Automático , Redes Neurales de la Computación , Polimorfismo de Nucleótido Simple/genética
4.
Cell Mol Neurobiol ; 42(7): 2273-2288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34014421

RESUMEN

The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.


Asunto(s)
Isoenzimas , Óxido Nítrico , Amidohidrolasas , Animales , Sistema Nervioso Central , Humanos , Ratones
5.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233204

RESUMEN

The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study's objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in major psychiatric disorders using publicly accessible expression databases. Since co-expressed genes are more likely to be involved in the same biologic processes, we investigated co-expression patterns with DDAH1 and DDAH2 in the dorsolateral prefrontal cortex in psychiatric patients and control subjects. There were no significant differences in DDAH1 and DDAH2 expression levels in schizophrenia or bipolar disorder patients compared to controls. Meanwhile, the data suggest that in patients, DDAH1 and DDHA2 undergo a functional shift mirrored in changes in co-expressed gene patterns. This disarrangement appears in the loss of expression level correlations between DDAH1 or DDAH2 and genes associated with psychiatric disorders and reduced functional similarity of DDAH1 or DDAH2 co-expressed genes in the patient groups. Our findings evidence the possible involvement of DDAH1 and DDAH2 in neuropsychiatric disorder development, but the underlying mechanisms need experimental validation.


Asunto(s)
Amidohidrolasas , Productos Biológicos , Trastornos Mentales , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Arginina/metabolismo , Humanos , Trastornos Mentales/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa
6.
Neuroscience ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876356

RESUMEN

Highly prevalent in laboratory rodents, 'social' hetero-grooming behavior is translationally relevant to modeling a wide range of neuropsychiatric disorders. Here, we comprehensively evaluated known mouse genes linked to aberrant hetero-grooming phenotype and applied bioinformatics tools to construct a network of their established protein-protein interactions (PPI). We next identified several distinct molecular clusters within this network, including neuronal differentiation, cytoskeletal, WNT-signaling and synapsins-associated pathways. Using additional bioinformatics analyses, we further identified 'central' (hub) proteins within these molecular clusters, likely key for mouse hetero-grooming behavior. Overall, a more comprehensive characterization of intricate molecular pathways linked to aberrant rodent grooming may markedly advance our understanding of underlying cellular mechanisms and related neurological disorders, eventually helping discover novel targets for their pharmacological or gene therapy interventions.

7.
Res Sq ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826437

RESUMEN

Despite genome-wide association studies of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci1-6, the underlying disease mechanisms remain largely unknown. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Leveraging our approach for identifying functional GWAS risk variants showing allele-specific open chromatin (ASoC)7, we systematically identified putative causal LOAD risk variants in human induced pluripotent stem cells (iPSC)-derived neurons, astrocytes, and microglia (MG) and linked PICALM risk allele to a previously unappreciated MG-specific role of PICALM in lipid droplet (LD) accumulation. ASoC mapping uncovered functional risk variants for 26 LOAD risk loci, mostly MG-specific. At the MG-specific PICALM locus, the LOAD risk allele of rs10792832 reduced transcription factor (PU.1) binding and PICALM expression, impairing the uptake of amyloid beta (Aß) and myelin debris. Interestingly, MG with PICALM risk allele showed transcriptional enrichment of pathways for cholesterol synthesis and LD formation. Genetic and pharmacological perturbations of MG further established a causal link between the reduced PICALM expression, LD accumulation, and phagocytosis deficits. Our work elucidates the selective LOAD vulnerability in microglia for the PICALM locus through detrimental LD accumulation, providing a neurobiological basis that can be exploited for developing novel clinical interventions.

8.
Front Pharmacol ; 14: 1184726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056991

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2022.927984.].

9.
Cell Genom ; 3(9): 100399, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37719141

RESUMEN

The mechanistic tie between genome-wide association study (GWAS)-implicated risk variants and disease-relevant cellular phenotypes remains largely unknown. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons as a neurodevelopmental model, we identify multiple schizophrenia (SZ) risk variants that display allele-specific open chromatin (ASoC) and are likely to be functional. Editing the strongest ASoC SNP, rs2027349, near vacuolar protein sorting 45 homolog (VPS45) alters the expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54. Notably, the transcriptomic changes in neurons are associated with SZ and other neuropsychiatric disorders. Neurons carrying the risk allele exhibit increased dendritic complexity and hyperactivity. Interestingly, individual/combinatorial gene knockdown shows that these genes alter cellular phenotypes in a non-additive synergistic manner. Our study reveals that multiple genes at a single GWAS risk locus mediate a compound effect on neural function, providing a mechanistic link between a non-coding risk variant and disease-related cellular phenotypes.

10.
Front Pharmacol ; 13: 927984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837277

RESUMEN

Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.

11.
Mol Neurodegener ; 17(1): 33, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526014

RESUMEN

BACKGROUND: The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS: Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS: Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer , Microglía , Proteínas Nucleares , Proteínas Supresoras de Tumor , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Inflamación/metabolismo , Lipopolisacáridos , Ratones , Microglía/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteómica , Transcriptoma , Proteínas Supresoras de Tumor/genética
12.
Front Behav Neurosci ; 16: 847410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431833

RESUMEN

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity-particularly, decreased spectral power of the cortex and striatum in the 0, 9-20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.

13.
Neuropsychopharmacology ; 46(10): 1746-1756, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34007041

RESUMEN

Repeated nicotine exposure leads to sensitization (SST) and enhances self-administration (SA) in rodents. However, the molecular basis of nicotine SST and SA and their biological relevance to the mounting genome-wide association study (GWAS) loci of human addictive behaviors are poorly understood. Considering a gateway drug role of nicotine, we modeled nicotine SST and SA in F1 progeny of inbred rats (F344/BN) and conducted integrative genomics analyses. We unexpectedly observed male-specific nicotine SST and a parental effect of SA only present in paternal F344 crosses. Transcriptional profiling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) core and shell further revealed sex- and brain region-specific transcriptomic signatures of SST and SA. We found that genes associated with SST and SA were enriched for those related to synaptic processes, myelin sheath, and tobacco use disorder or chemdependency. Interestingly, SST-associated genes were often downregulated in male VTA but upregulated in female VTA, and strongly enriched for smoking GWAS risk variants, possibly explaining the male-specific SST. For SA, we found widespread region-specific allelic imbalance of expression (AIE), of which genes showing AIE bias toward paternal F344 alleles in NAc core were strongly enriched for SA-associated genes and for GWAS risk variants of smoking initiation, likely contributing to the parental effect of SA. Our study suggests a mechanistic link between transcriptional changes underlying the NIC SST and SA and human nicotine addiction, providing a resource for understanding the neurobiology basis of the GWAS findings on human smoking and other addictive phenotypes.


Asunto(s)
Conducta Adictiva , Nicotina , Animales , Conducta Adictiva/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Fenotipo , Ratas , Ratas Endogámicas F344
14.
Neuropharmacology ; 182: 108373, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33132188

RESUMEN

Trace amine-associated receptors (TAARs) are a class of sensory G protein-coupled receptors that detect biogenic amines, products of decarboxylation of amino acids. The majority of TAARs (TAAR2-TAAR9) have been described mainly in the olfactory epithelium and considered to be olfactory receptors sensing innate odors. However, there is recent evidence that one of the members of this family, TAAR5, is expressed also in the limbic brain areas receiving projection from the olfactory system and involved in the regulation of emotions. In this study, we further characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO mice) that express beta-galactosidase mapping TAAR5 expression. We found that in TAAR5-KO mice the number of dopamine neurons, the striatal levels of dopamine and its metabolites, as well as striatal levels of GDNF mRNA, are elevated indicating a potential increase in dopamine neuron proliferation. Furthermore, an analysis of TAAR5 beta-galactosidase expression revealed that TAAR5 is present in the major neurogenic areas of the brain such as the subventricular zone (SVZ), the subgranular zone (SGZ) and the less characterized potentially neurogenic zone surrounding the 3rd ventricle. Direct analysis of neurogenesis by using specific markers doublecortin (DCX) and proliferating cell nuclear antigen (PCNA) revealed at least 2-fold increase in the number of proliferating neurons in the SVZ and SGZ of TAAR5-KO mice, but no such markers were detected in mutant or control mice in the areas surrounding the 3rd ventricle. These observations indicate that TAAR5 involved not only in regulation of emotional status but also adult neurogenesis and dopamine transmission. Thus, future TAAR5 antagonists may exert not only antidepressant and/or anxiolytic action but may also provide new treatment opportunity for neurodegenerative disorders such as Parkinson's disease.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Encéfalo/crecimiento & desarrollo , Neuronas Dopaminérgicas/metabolismo , Proteína Doblecortina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética
15.
Mol Neuropsychiatry ; 5(Suppl 1): 85-96, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32399472

RESUMEN

Microglia are the primary innate immune cell type in the brain that have been implicated in the pathogenesis of several neurodegenerative and neuropsychiatric disorders, most notably Alzheimer's disease (AD) and schizophrenia. Microglia generated from human induced pluripotent stem cells (hiPSCs) represent a promising in vitro cellular model for studying the neuroimmune interactions involved in these disorders. Among several methods of generating -hiPSC-derived microglia (iMG) - varying in duration and resultant purity - a recent protocol by Brownjohn et al. [Stem Cell Reports. 2018 Apr;10(4):1294-307] is particularly simple and efficient. However, the replicability of this method, transcriptomic similarity of these iMG to primary adult microglia, and their genetic relevance to disease (i.e., enrichment of disease risk loci in genes preferentially expressed in these cells) remains unclear. Using two hiPSC lines, we demonstrated that Brownjohn's protocol can rapidly generate iMG that morphologically and functionally resembled microglia. The iMG cells we generated were found to be transcriptionally similar to previously reported iMG, as well as fetal and adult microglia. Furthermore, by using cell type-specific gene expression to partition disease heritability, we showed that iMG cells are genetically relevant to AD but found no significant enrichments of risk loci of Parkinson's disease, schizophrenia, major depressive disorder, bipolar disorder, autism spectrum disorder, or body mass index. Across a range of neuronal and immune cell types, we found only iMG, primary microglia, and microglia-like cell types exhibited a significant enrichment for AD heritability. Our results thus support the use of iMG as a human cellular model for understanding AD biology and underlying genetic factors, as well as for developing and efficiently screening new therapeutics.

16.
Front Mol Neurosci ; 13: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194374

RESUMEN

Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors found in mammals. While TAAR1 is expressed in several brain regions, all the other TAARs have been described mainly in the olfactory epithelium and the glomerular layer of the olfactory bulb and are believed to serve as a new class of olfactory receptors sensing innate odors. However, there is evidence that TAAR5 could play a role also in the central nervous system. In this study, we characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO) expressing beta-galactosidase mapping TAAR5 expression. We found that TAAR5 is expressed not only in the glomerular layer in the olfactory bulb but also in deeper layers projecting to the limbic brain olfactory circuitry with prominent expression in numerous limbic brain regions, such as the anterior olfactory nucleus, the olfactory tubercle, the orbitofrontal cortex (OFC), the amygdala, the hippocampus, the piriform cortex, the entorhinal cortex, the nucleus accumbens, and the thalamic and hypothalamic nuclei. TAAR5-KO mice did not show gross developmental abnormalities but demonstrated less anxiety- and depressive-like behavior in several behavioral tests. TAAR5-KO mice also showed significant decreases in the tissue levels of serotonin and its metabolite in several brain areas and were more sensitive to the hypothermic action of serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propilamino)tetralin (8-OH-DPAT). These observations indicate that TAAR5 is not just innate odor-sensing olfactory receptor but also serves to provide olfactory input into limbic brain areas to regulate emotional behaviors likely via modulation of the serotonin system. Thus, anxiolytic and/or antidepressant action of future TAAR5 antagonists could be predicted. In general, "olfactory" TAAR-mediated brain circuitry may represent a previously unappreciated neurotransmitter system involved in the transmission of innate odors into emotional behavioral responses.

17.
Science ; 369(6503): 561-565, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32732423

RESUMEN

Most neuropsychiatric disease risk variants are in noncoding sequences and lack functional interpretation. Because regulatory sequences often reside in open chromatin, we reasoned that neuropsychiatric disease risk variants may affect chromatin accessibility during neurodevelopment. Using human induced pluripotent stem cell (iPSC)-derived neurons that model developing brains, we identified thousands of genetic variants exhibiting allele-specific open chromatin (ASoC). These neuronal ASoCs were partially driven by altered transcription factor binding, overrepresented in brain gene enhancers and expression quantitative trait loci, and frequently associated with distal genes through chromatin contacts. ASoCs were enriched for genetic variants associated with brain disorders, enabling identification of functional schizophrenia risk variants and their cis-target genes. This study highlights ASoC as a functional mechanism of noncoding neuropsychiatric risk variants, providing a powerful framework for identifying disease causal variants and genes.


Asunto(s)
Alelos , Encéfalo/metabolismo , Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Esquizofrenia/genética , Elementos de Facilitación Genéticos , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Riesgo
18.
Genetics ; 212(1): 231-243, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30898771

RESUMEN

Precise signaling at the neuromuscular junction (NMJ) is essential for proper muscle contraction. In the Caenorhabditis elegans pharynx, acetylcholine (ACh) released from the MC and M4 motor neurons stimulates two different types of contractions in adjacent muscle cells, termed pumping and isthmus peristalsis. MC stimulates rapid pumping through the nicotinic ACh receptor EAT-2, which is tightly localized at the MC NMJ, and eat-2 mutants exhibit a slow pump rate. Surprisingly, we found that eat-2 mutants also hyperstimulated peristaltic contractions, and that they were characterized by increased and prolonged Ca2+ transients in the isthmus muscles. This hyperstimulation depends on cross talk with the GAR-3 muscarinic ACh receptor as gar-3 mutation specifically suppressed the prolonged contraction and increased Ca2+ observed in eat-2 mutant peristalses. Similar GAR-3-dependent hyperstimulation was also observed in mutants lacking the ace-3 acetylcholinesterase, and we suggest that NMJ defects in eat-2 and ace-3 mutants result in ACh stimulation of extrasynaptic GAR-3 receptors in isthmus muscles. gar-3 mutation also suppressed slow larval growth and prolonged life span phenotypes that result from dietary restriction in eat-2 mutants, indicating that cross talk with the GAR-3 receptor has a long-term impact on feeding behavior and eat-2 mutant phenotypes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Contracción Muscular , Músculos/metabolismo , Unión Neuromuscular/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Neuronas Motoras , Músculos/fisiología , Faringe/metabolismo , Faringe/fisiología , Receptores Muscarínicos/fisiología , Receptores Nicotínicos/fisiología , Transducción de Señal
19.
Nat Neurosci ; 21(12): 1717-1727, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455454

RESUMEN

SETD5 gene mutations have been identified as a frequent cause of idiopathic intellectual disability. Here we show that Setd5-haploinsufficient mice present developmental defects such as abnormal brain-to-body weight ratios and neural crest defect-associated phenotypes. Furthermore, Setd5-mutant mice show impairments in cognitive tasks, enhanced long-term potentiation, delayed ontogenetic profile of ultrasonic vocalization, and behavioral inflexibility. Behavioral issues are accompanied by abnormal expression of postsynaptic density proteins previously associated with cognition. Our data additionally indicate that Setd5 regulates RNA polymerase II dynamics and gene transcription via its interaction with the Hdac3 and Paf1 complexes, findings potentially explaining the gene expression defects observed in Setd5-haploinsufficient mice. Our results emphasize the decisive role of Setd5 in a biological pathway found to be disrupted in humans with intellectual disability and autism spectrum disorder.


Asunto(s)
Conducta Animal/fisiología , Cognición/fisiología , Potenciación a Largo Plazo/genética , Metiltransferasas/genética , Animales , Encéfalo/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Haploinsuficiencia , Metiltransferasas/metabolismo , Ratones Noqueados , ARN Polimerasa II/metabolismo , Vocalización Animal/fisiología
20.
Cancer Genet ; 204(9): 492-500, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22018271

RESUMEN

We used methylation-sensitive high resolution melting analysis to assess methylation of CpG islands within the promoters of the TIMP4, GATA4, SOX18, and EGFL7 genes in samples of non-small cell lung cancer and surrounding apparently normal tissue and noncancerous lung tissues. We found that the promoter methylation was heterogeneous in both tumor and surrounding normal tissue. This is in contrast to healthy lung tissue, where the promoters were normally either non- or hypomethylated, and the heterogeneity of methylation was low. An increased heterogeneity of methylation in the normal tissues surrounding the tumor may suggest an early start of epigenetic processes preceding genetic and morphologic changes and can be used as a biomarker of early cancerization events. This analysis is an easy and sensitive tool for studying epigenetic heterogeneity and could be used in clinical practice.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Factores de Crecimiento Endotelial/genética , Factor de Transcripción GATA4/genética , Neoplasias Pulmonares/genética , Factores de Transcripción SOXF/genética , Inhibidores Tisulares de Metaloproteinasas/genética , Proteínas de Unión al Calcio , Islas de CpG , Metilación de ADN , Familia de Proteínas EGF , Epigénesis Genética , Marcadores Genéticos , Humanos , Regiones Promotoras Genéticas , Inhibidor Tisular de Metaloproteinasa-4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA