Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 47, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291362

RESUMEN

Drug-drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chemical spaces, primarily due to the scarcity of high-quality labeled DDI data. Inspired by recent advances in computer vision, we present SMR-DDI, a self-supervised framework that leverages contrastive learning to embed drugs into a scaffold-based feature space. Molecular scaffolds represent the core structural motifs that drive pharmacological activities, making them valuable for learning informative representations. Specifically, we pre-trained SMR-DDI on a large-scale unlabeled molecular dataset. We generated augmented views for each molecule via SMILES enumeration and optimized the embedding process through contrastive loss minimization between views. This enables the model to capture relevant and robust molecular features while reducing noise. We then transfer the learned representations for the downstream prediction of DDI. Experiments show that the new feature space has comparable expressivity to state-of-the-art molecular representations and achieved competitive DDI prediction results while training on less data. Additional investigations also revealed that pre-training on more extensive and diverse unlabeled molecular datasets improved the model's capability to embed molecules more effectively. Our results highlight contrastive learning as a promising approach for DDI prediction that can identify potentially hazardous drug combinations using only structural information.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Aprendizaje Automático Supervisado
2.
BMC Bioinformatics ; 22(1): 477, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34607569

RESUMEN

BACKGROUND: Deep learning methods are a proven commodity in many fields and endeavors. One of these endeavors is predicting the presence of adverse drug-drug interactions (DDIs). The models generated can predict, with reasonable accuracy, the phenotypes arising from the drug interactions using their molecular structures. Nevertheless, this task requires improvement to be truly useful. Given the complexity of the predictive task, an extensive benchmarking on structure-based models for DDIs prediction was performed to evaluate their drawbacks and advantages. RESULTS: We rigorously tested various structure-based models that predict drug interactions using different splitting strategies to simulate different real-world scenarios. In addition to the effects of different training and testing setups on the robustness and generalizability of the models, we then explore the contribution of traditional approaches such as multitask learning and data augmentation. CONCLUSION: Structure-based models tend to generalize poorly to unseen drugs despite their ability to identify new DDIs among drugs seen during training accurately. Indeed, they efficiently propagate information between known drugs and could be valuable for discovering new DDIs in a database. However, these models will most probably fail when exposed to unknown drugs. While multitask learning does not help in our case to solve the problem, the use of data augmentation does at least mitigate it. Therefore, researchers must be cautious of the bias of the random evaluation scheme, especially if their goal is to discover new DDIs.


Asunto(s)
Preparaciones Farmacéuticas , Bases de Datos Factuales , Interacciones Farmacológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA