Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37511288

RESUMEN

Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.


Asunto(s)
Citrulinación , Vesículas Extracelulares , Recién Nacido , Humanos , Animales , Porcinos , Desiminasas de la Arginina Proteica/metabolismo , Procesamiento Proteico-Postraduccional , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Convulsiones/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887158

RESUMEN

Pancreatic ductal adenocarcinoma remains an aggressive cancer with a low 5-year survival rate. Although gemcitabine has been a standard treatment for advanced pancreatic cancer, patients often develop resistance to this therapeutic. We have previously shown that treating pancreatic cancer cells in vitro with a combination of gemcitabine and the cytokine TRAIL significantly reduced both cell viability and survival. The data presented here demonstrate that this response to treatment is inhibited when cells are incubated with a conditioned medium derived from untreated cells. We show that this inhibition is specifically mediated by extracellular vesicles present in the conditioned medium, as seen by a significant decrease in apoptosis. Additionally, we further demonstrate that this effect can be reversed in the presence of GW4869, an inhibitor of exosome biogenesis and release. These results show that pancreatic cancer cell-derived extracellular vesicles can confer resistance to treatment with gemcitabine and TRAIL. The implications of these findings suggest that removal of EVs during treatment can improve the response of cells to gemcitabine and TRAIL treatment in vitro.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Apoptosis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Vesículas Extracelulares/patología , Humanos , Neoplasias Pancreáticas/patología , Gemcitabina , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563075

RESUMEN

Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.


Asunto(s)
Vesículas Extracelulares , Proteómica , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Hipoxia/metabolismo , Ratas Topo/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Proteoma/metabolismo
4.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467210

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer vesicles which are released from cells and play multifaceted roles in cellular communication in health and disease. EVs can be isolated from various body fluids, including serum and plasma, and are usable biomarkers as they can inform health status. Studies on EVs are an emerging research field in teleost fish, with accumulating evidence for important functions in immunity and homeostasis, but remain to be characterised in most fish species, including halibut. Protein deimination is a post-translational modification caused by a conserved family of enzymes, named peptidylarginine deiminases (PADs), and results in changes in protein folding and function via conversion of arginine to citrulline in target proteins. Protein deimination has been recently described in halibut ontogeny and halibut serum. Neither EV profiles, nor total protein or deiminated protein EV cargos have yet been assessed in halibut and are reported in the current study. Halibut serum EVs showed a poly-dispersed population in the size range of 50-600 nm, with modal size of EVs falling at 138 nm, and morphology was further confirmed by transmission electron microscopy. The assessment of EV total protein cargo revealed 124 protein hits and 37 deiminated protein hits, whereof 15 hits were particularly identified in deiminated form only. Protein interaction network analysis showed that deimination hits are involved in a range of gene regulatory, immune, metabolic and developmental processes. The same was found for total EV protein cargo, although a far wider range of pathways was found than for deimination hits only. The expression of complement component C3 and C4, as well as pentraxin-like protein, which were identified by proteomic analysis, was further verified in EVs by western blotting. This showed that C3 is exported in EVs at higher levels than C4 and deiminated C3 was furthermore confirmed to be at high levels in the deimination-enriched EV fractions, while, in comparison, C4 showed very low detection in deimination-enriched EV fractions. Pentraxin was exported in EVs, but not detected in the deimination-enriched fractions. Our findings provide novel insights into EV-mediated communication in halibut serum, via transport of protein cargo, including post-translationally deiminated proteins.


Asunto(s)
Citrulinación , Vesículas Extracelulares/metabolismo , Proteínas de Peces/metabolismo , Proteoma/metabolismo , Animales , Proteínas del Sistema Complemento/metabolismo , Vesículas Extracelulares/ultraestructura , Proteínas de Peces/sangre , Lenguado , Mapas de Interacción de Proteínas , Desiminasas de la Arginina Proteica/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573274

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/patología , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 3/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Vesículas Extracelulares/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Invasividad Neoplásica/patología , Ornitina/análogos & derivados , Ornitina/farmacología , Ornitina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Prohibitinas , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 3/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/metabolismo
6.
Fish Shellfish Immunol ; 106: 79-102, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32731012

RESUMEN

The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.


Asunto(s)
Proteínas de Artrópodos/inmunología , Citrulinación/inmunología , Vesículas Extracelulares/inmunología , Nephropidae/inmunología , Procesamiento Proteico-Postraduccional/inmunología , Animales , Vesículas Extracelulares/metabolismo , Hemolinfa/inmunología , Nephropidae/metabolismo
7.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325910

RESUMEN

The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Metabolismo Energético , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Patógeno , Inmunidad , Procesamiento Proteico-Postraduccional , Animales , Bovinos , Cromatografía Liquida , Vesículas Extracelulares/ultraestructura , Interacciones Huésped-Patógeno/inmunología , Neoplasias/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326590

RESUMEN

The identification of biomarkers for early diagnosis of Parkinson's disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to "Alzheimer's disease", "PD", "Huntington's disease", "prion diseases", as well as for "oxidative phosphorylation", "thermogenesis", "metabolic pathways", "Staphylococcus aureus infection", gap junction, "platelet activation", "apelin signalling", "retrograde endocannabinoid signalling", "systemic lupus erythematosus", and "non-alcoholic fatty liver disease". Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.


Asunto(s)
Encéfalo/metabolismo , Citrulinación , Vesículas Extracelulares/metabolismo , Enfermedad de Parkinson/sangre , Desiminasas de la Arginina Proteica/metabolismo , Animales , Biomarcadores/sangre , Encéfalo/fisiopatología , Cromatografía Liquida , Modelos Animales de Enfermedad , Vesículas Extracelulares/enzimología , Vesículas Extracelulares/ultraestructura , Inmunohistoquímica , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Microscopía Electrónica de Transmisión , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098295

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive adult brain tumour with poor prognosis. Roles for peptidylarginine deiminases (PADs) in GBM have recently been highlighted. Here, two GBM cell lines were treated with PAD2, PAD3 and PAD4 isozyme-specific inhibitors. Effects were assessed on extracellular vesicle (EV) signatures, including EV-microRNA cargo (miR21, miR126 and miR210), and on changes in cellular protein expression relevant for mitochondrial housekeeping (prohibitin (PHB)) and cancer progression (stromal interaction molecule 1 (STIM-1) and moesin), as well as assessing cell invasion. Overall, GBM cell-line specific differences for the three PAD isozyme-specific inhibitors were observed on modulation of EV-signatures, PHB, STIM-1 and moesin protein levels, as well as on cell invasion. The PAD3 inhibitor was most effective in modulating EVs to anti-oncogenic signatures (reduced miR21 and miR210, and elevated miR126), to reduce cell invasion and to modulate protein expression of pro-GBM proteins in LN229 cells, while the PAD2 and PAD4 inhibitors were more effective in LN18 cells. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins relating to cancer, metabolism and inflammation differed between the two GBM cell lines. Our findings highlight roles for the different PAD isozymes in the heterogeneity of GBM tumours and the potential for tailored PAD-isozyme specific treatment.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 3/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Vesículas Extracelulares/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prohibitinas , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Arginina Deiminasa Proteína-Tipo 3/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
10.
Fish Shellfish Immunol ; 92: 249-255, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31200072

RESUMEN

Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Extracellular vesicles are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins and extracellular vesicles (EVs) are described for the first time in shark plasma. We report a poly-dispersed population of shark plasma EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In plasma, 6 deiminated proteins, including complement and immunoglobulin, were identified, whereof 3 proteins were found to be exported in plasma-derived EVs. A PAD homologue was identified in shark plasma by Western blotting and detected an expected 70 kDa size. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in nurse shark plasma. This is the first report of deiminated proteins in plasma and EVs, highlighting a hitherto unrecognized post-translational modification in key immune proteins of innate and adaptive immunity in shark.


Asunto(s)
Arginina/metabolismo , Citrulinación/inmunología , Citrulina/metabolismo , Proteínas de Peces/inmunología , Desiminasas de la Arginina Proteica/inmunología , Tiburones/inmunología , Animales , Citrulina/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Proteínas de Peces/sangre , Proteínas de Peces/metabolismo , Desiminasas de la Arginina Proteica/genética , Tiburones/genética
11.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671738

RESUMEN

Naked mole-rats are long-lived animals that show unusual resistance to hypoxia, cancer and ageing. Protein deimination is an irreversible post-translational modification caused by the peptidylarginine deiminase (PAD) family of enzymes, which convert arginine into citrulline in target proteins. Protein deimination can cause structural and functional protein changes, facilitating protein moonlighting, but also leading to neo-epitope generation and effects on gene regulation. Furthermore, PADs have been found to regulate cellular release of extracellular vesicles (EVs), which are lipid-vesicles released from cells as part of cellular communication. EVs carry protein and genetic cargo and are indicative biomarkers that can be isolated from most body fluids. This study was aimed at profiling deiminated proteins in plasma and EVs of naked mole-rat. Key immune and metabolic proteins were identified to be post-translationally deiminated, with 65 proteins specific for plasma, while 42 proteins were identified to be deiminated in EVs only. Using protein-protein interaction network analysis, deiminated plasma proteins were found to belong to KEEG (Kyoto Encyclopedia of Genes and Genomes) pathways of immunity, infection, cholesterol and drug metabolism, while deiminated proteins in EVs were also linked to KEEG pathways of HIF-1 signalling and glycolysis. The mole-rat EV profiles showed a poly-dispersed population of 50-300 nm, similar to observations of human plasma. Furthermore, the EVs were assessed for three key microRNAs involved in cancer, inflammation and hypoxia. The identification of post-translational deimination of critical immunological and metabolic markers contributes to the current understanding of protein moonlighting functions, via post-translational changes, in the longevity and cancer resistance of naked mole-rats.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Vesículas Extracelulares/metabolismo , Ratas Topo/inmunología , Ratas Topo/metabolismo , Plasma/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Arginina/metabolismo , Biomarcadores , Proteínas Sanguíneas/genética , Citrulina/metabolismo , Regulación de la Expresión Génica , Genoma , Humanos , Inmunidad , Longevidad , MicroARNs/metabolismo , Ratas Topo/genética , Mapas de Interacción de Proteínas , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , Proteómica
12.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597867

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs), which catalyze the post-translational protein deimination of target proteins, are implicated in cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels, were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3 deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related proteins, highlight PADs as novel targets for modulating GBM tumour communication.


Asunto(s)
Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroARNs/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Antineoplásicos/farmacología , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular , Cromatografía Liquida , Vesículas Extracelulares/ultraestructura , Histonas/metabolismo , Humanos , MicroARNs/genética , Ornitina/análogos & derivados , Ornitina/farmacología , Prohibitinas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Desiminasas de la Arginina Proteica/genética , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem
13.
Neurobiol Learn Mem ; 124: 48-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25933505

RESUMEN

NMDA receptor-dependent long-term potentiation (LTP) at hippocampal CA1 synapses is a well-accepted mechanism underlying long-term memory (LTM) formation. However, studies with mice that lack threonine-286 autophosphorylation of αCaMKII have shown that hippocampal LTM can be formed despite absence of NMDA receptor-dependent CA1 LTP. After multiple training trials, LTM formation in these mutants is linked to the generation of multi-innervated dendritic spines (MIS), a spine that receives typically two presynaptic inputs. PSD-95 overexpression is sufficient for MIS generation and depends on mTOR signaling. LTM that involves MIS generation appears less modifiable upon retrieval in comparison to LTM without MIS generation. Taken together, MIS generation appears to be a novel LTM mechanism after multiple training trials, which may occur in diseases with impaired LTP or conditions affecting negative feedback CaMKII signaling at the synapse.


Asunto(s)
Encéfalo/fisiología , Espinas Dendríticas/fisiología , Potenciación a Largo Plazo , Memoria a Largo Plazo/fisiología , Animales , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Ratones
14.
Neurodegener Dis ; 15(2): 93-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871323

RESUMEN

BACKGROUND: Huntington's disease (HD) is a late-onset fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene coding for the protein huntingtin and is characterised by progressive motor, psychiatric and cognitive decline. We previously demonstrated that normal synaptic function in HD could be restored by application of dopamine receptor agonists, suggesting that changes in the release or bioavailability of dopamine may be a contributing factor to the disease process. OBJECTIVE: In the present study, we examined the properties of midbrain dopaminergic neurones and dopamine release in presymptomatic and symptomatic transgenic HD mice. METHODS AND RESULTS: Using intracellular sharp recordings and immunohistochemistry, we found that neuronal excitability was increased due to a loss of slow afterhyperpolarisation and that these changes were related to an apparent functional loss and abnormal distribution of SK3 channels (KCa2.3 encoded by the KCNN3 gene), a class of small-conductance calcium-activated potassium channels. Electrochemical detection of dopamine showed that this observation was associated with an enhanced dopamine release in presymptomatic transgenic mice and a drastic reduction in symptomatic animals. These changes occurred in the context of a progressive expansion in the CAG repeat number and nuclear localisation of mutant protein within the substantia nigra pars compacta. CONCLUSIONS: Dopaminergic neuronal dysfunction is a key early event in HD disease progression. The initial increase in dopamine release appears to be related to a loss of SK3 channel function, a protein containing a polyglutamine tract. Implications for polyglutamine-mediated sequestration of SK3 channels, dopamine-associated DNA damage and CAG expansion are discussed in the context of HD.


Asunto(s)
Encéfalo/patología , Neuronas Dopaminérgicas/fisiología , Enfermedad de Huntington/patología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Fenómenos Biofísicos/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Estimulación Eléctrica , Femenino , Regulación de la Expresión Génica/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Expansión de Repetición de Trinucleótido/genética , Tirosina 3-Monooxigenasa/metabolismo
15.
Cell Signal ; 121: 111269, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909930

RESUMEN

Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.

16.
Virulence ; 14(1): 2180932, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36813781

RESUMEN

Epizootiologists recurrently encounter symbionts and pathobionts in the haemolymph (blood equivalent) of shellfish. One such group is the dinoflagellate genus Hematodinium, which contains several species that cause debilitating disease in decapod crustaceans. The shore crab Carcinus maenas acts as a mobile reservoir of microparasites, including Hematodinium sp., thereby posing a risk to other co-located commercially important species, e.g. velvet crabs (Necora puber). Despite the widespread prevalence and documented seasonality of Hematodinium infection dynamics, there is a knowledge gap regarding host-pathogen antibiosis, namely, how Hematodinium avoids the host's immune defences. Herein, we interrogated the haemolymph of Hematodinium-positive and Hematodinium-negative crabs for extracellular vesicle (EV) profiles (a proxy for cellular communication), alongside proteomic signatures for post-translational citrullination/deimination performed by arginine deiminases, which can infer a pathologic state. Circulating EV numbers in parasitized crab haemolymph were reduced significantly, accompanied by smaller EV modal size profiles (albeit non-significantly) when compared to Hematodinium-negative controls. Differences were observed for citrullinated/deiminated target proteins in the haemolymph between the parasitized and control crabs, with fewer hits identified overall in the former. Three deiminated proteins specific to parasitized crab haemolymph were actin, Down syndrome cell adhesion molecule (DSCAM), and nitric oxide synthase - factors that contribute to innate immunity. We report, for the first time, Hematodinium sp. could interfere with EV biogenesis, and that protein deimination is a putative mechanism of immune-modulation in crustacean-Hematodinium interactions.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Citrulinación , Proteómica , Hemolinfa
17.
PLoS One ; 18(4): e0283954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37014916

RESUMEN

An in vitro model of the human blood-brain barrier was developed, based on a collagen hydrogel containing astrocytes, overlaid with a monolayer of endothelium, differentiated from human induced pluripotent stem cells (hiPSCs). The model was set up in transwell filters allowing sampling from apical and basal compartments. The endothelial monolayer had transendothelial electrical resistance (TEER) values >700Ω.cm2 and expressed tight-junction markers, including claudin-5. After differentiation of hiPSCs the endothelial-like cells expressed VE-cadherin (CDH5) and von-Willebrand factor (VWF) as determined by immunofluorescence. However, electron microscopy indicated that at set-up (day 8 of differentiation), the endothelial-like cells still retained some features of the stem cells, and appeared immature, in comparison with primary brain endothelium or brain endothelium in vivo. Monitoring showed that the TEER declined gradually over 10 days, and transport studies were best carried out in a time window 24-72hrs after establishment of the model. Transport studies indicated low permeability to paracellular tracers and functional activity of P-glycoprotein (ABCB1) and active transcytosis of polypeptides via the transferrin receptor (TFR1).


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Humanos , Células Cultivadas , Hidrogeles , Técnicas de Cocultivo , Diferenciación Celular
18.
J Neurosci ; 31(38): 13625-34, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21940453

RESUMEN

Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Hormona Liberadora de Corticotropina/fisiología , Prosencéfalo/metabolismo , Receptores de Hormona Liberadora de Corticotropina/fisiología , Estrés Psicológico/fisiopatología , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/citología , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Conducta Espacial/fisiología , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Estrés Psicológico/psicología
19.
Neural Plast ; 2011: 867525, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21773054

RESUMEN

Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4-6°C) permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX) and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.


Asunto(s)
Giro Dentado/fisiología , Hibernación/fisiología , Mitosis/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Sciuridae/fisiología , Animales , Proliferación Celular
20.
Dev Comp Immunol ; 125: 104225, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34358577

RESUMEN

Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.


Asunto(s)
Petromyzon/metabolismo , Animales , Arginina/metabolismo , Biomarcadores/metabolismo , Comunicación Celular , Citrulinación , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Filogenia , Plasma , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Desiminasas de la Arginina Proteica/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA