Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(10): e2214888120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853945

RESUMEN

Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Células Neoplásicas Circulantes , Animales , Femenino , Humanos , Ratas , Proteína 7 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Neoplasias de la Mama/genética , Necrosis
2.
Nat Mater ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965405

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.

3.
Soft Matter ; 17(7): 1929-1939, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33427280

RESUMEN

We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume of 12 µL to measure up to six decades in time of rheological behavior. We demonstrate the use of dynamic light scattering microrheology (DLSµR) on a variety of soft materials, including dilute polymer solutions, covalently-crosslinked polymer gels, and active, biological fluids. In this work, we detail the procedure for applying the technique to new materials and discuss the critical considerations for implementing the technique, including a custom analysis script for analyzing data output. We focus on the advantages of applying DLSµR to biologically relevant materials: breast cancer cells encapsulated in a collagen gel and cystic fibrosis sputum. DLSµR is an easy, efficient, and economical rheological technique that can guide the design of new polymeric materials and facilitate the understanding of the underlying physics governing behavior of naturally derived materials.


Asunto(s)
Polímeros , Dispersión Dinámica de Luz , Geles , Reología , Viscosidad
4.
Phys Rev Lett ; 121(14): 148001, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30339454

RESUMEN

Biological systems are equipped with a diverse repertoire of proteins that regulate DNA topology with precision that is beyond the reach of conventional polymer chemistry. Here, we harness the unique properties of topoisomerases to synthesize Olympic hydrogels formed by topologically interlinked DNA rings. Using dynamic light scattering microrheology to probe the viscoelasticity of DNA topological networks, we show that topoisomerase II enables the facile preparation of active, adenosine triphosphate-driven Olympic hydrogels that can be switched between liquid and solid states on demand. Our results provide a versatile system for engineering switchable topological materials that may be broadly leveraged to model the impact of topological constraints and active dynamics in the physics of chromosomes and other polymeric materials.


Asunto(s)
ADN-Topoisomerasas de Tipo II/química , ADN/química , Hidrogeles/síntesis química , Proteínas de Unión a Poli-ADP-Ribosa/química , ADN/síntesis química , Hidrogeles/química , Conformación Molecular , Plásmidos/química
5.
Biophys J ; 111(7): 1339-1349, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705758

RESUMEN

Topological constraints, such as those associated with DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA organization at biologically relevant length scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of supercoiled DNA. Our methodology enables the study of supercoiled DNA molecules at greater length scales and supercoiling densities than previously explored by simulation. With this approach, we study the conformational transitions that arise due to supercoiling across the full range of supercoiling densities that are commonly explored by living systems. Simulations of ring DNA molecules with lengths at the scale of topological domains in the Escherichia coli chromosome (∼10 kilobases) reveal large-scale conformational transitions elicited by supercoiling. The conformational transitions result in three supercoiling conformational regimes that are governed by a competition among chiral coils, extended plectonemes, and branched hyper-supercoils. These results capture the nonmonotonic relationship of size versus degree of supercoiling observed in experimental sedimentation studies of supercoiled DNA, and our results provide a physical explanation of the conformational transitions underlying this behavior. The length scales and supercoiling regimes investigated here coincide with those relevant to transcription-coupled remodeling of supercoiled topological domains, and we discuss possible implications of these findings in terms of the interplay between transcription and topology in bacterial chromosome organization.


Asunto(s)
Simulación por Computador , ADN Bacteriano/química , ADN Superhelicoidal/química , Modelos Genéticos , Conformación de Ácido Nucleico , Algoritmos , Escherichia coli , Hidrodinámica , Método de Montecarlo , Transcripción Genética
6.
Mod Phys Lett B ; 30(8)2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27127310

RESUMEN

In vivo chromosomal behavior is dictated by the organization of genomic DNA at length scales ranging from nanometers to microns. At these disparate scales, the DNA conformation is influenced by a range of proteins that package, twist and disentangle the DNA double helix, leading to a complex hierarchical structure that remains undetermined. Thus, there is a critical need for methods of structural characterization of DNA that can accommodate complex environmental conditions over biologically relevant length scales. Based on multiscale molecular simulations, we report on the possibility of measuring supercoiling in complex environments using angular correlations of scattered X-rays resulting from X-ray free electron laser (xFEL) experiments. We recently demonstrated the observation of structural detail for solutions of randomly oriented metallic nanoparticles [D. Mendez et al., Philos. Trans. R. Soc. B360 (2014) 20130315]. Here, we argue, based on simulations, that correlated X-ray scattering (CXS) has the potential for measuring the distribution of DNA folds in complex environments, on the scale of a few persistence lengths.

7.
J Chem Phys ; 143(24): 241105, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26723584

RESUMEN

Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

8.
J Chem Phys ; 141(16): 164707, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25362332

RESUMEN

The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO2) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called "intrinsic friction analysis" (IFA) provided direct access to the Hamaker constants for HOPG and MoS2, as well as the control sample, calcium fluoride (CaF2). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

9.
Biomaterials ; 291: 121864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343608

RESUMEN

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Perros , Ratones , Elastina/metabolismo , Exosomas/metabolismo , Células Endoteliales , Péptidos/farmacología , Péptidos/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo
10.
Sci Adv ; 7(8)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597244

RESUMEN

Living tissues embody a unique class of hybrid materials in which active and thermal forces are inextricably linked. Mechanical characterization of tissues demands descriptors that respect this hybrid nature. In this work, we develop a microrheology-based force spectrum analysis (FSA) technique to dissect the active and passive fluctuations of the extracellular matrix (ECM) in three-dimensional (3D) cell culture models. In two different stromal models and a 3D breast cancer spheroid model, our FSA reveals emergent hybrid dynamics that involve both high-frequency stress stiffening and low-frequency fluidization of the ECM. We show that this is a general consequence of nonlinear coupling between active forces and the frequency-dependent viscoelasticity of stress-stiffening networks. In 3D breast cancer spheroids, this dual active stiffening and fluidization is tightly connected with invasion. Our results suggest a mechanism whereby breast cancer cells reconcile the seemingly contradictory requirements for both tension and malleability in the ECM during invasion.


Asunto(s)
Neoplasias de la Mama , Técnicas de Cultivo de Célula , Matriz Extracelular , Femenino , Humanos , Viscosidad
11.
Phys Rev E ; 102(2-1): 020501, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942387

RESUMEN

The viscoelastic behavior of a physically crosslinked gel involves a spectrum of molecular relaxation processes, which at the single-chain level involve the chain undergoing transient hand-to-hand motion through the network. We develop a self-consistent theory for describing transiently associating polymer solutions that captures these complex dynamics. A single polymer chain transiently binds to a viscoelastic background that represents the polymer network formed by surrounding polymer chains. The viscoelastic background is described in the equation of motion as a memory kernel, which is self-consistently determined based on the predicted rheological behavior from the chain itself. The solution to the memory kernel is translated into rheological predictions of the complex modulus over a wide range of frequencies to capture the time-dependent behavior of a physical gel. Using the loss tangent predictions, a phase diagram is shown for the sol-gel transition of polymers with dynamic association affinities. This theory provides a predictive, molecular-level framework for the design of associating gels and supramolecular assemblies with targeted rheological properties.

12.
Artículo en Inglés | MEDLINE | ID: mdl-32411691

RESUMEN

Human tissues, both in health and disease, are exquisitely organized into complex three-dimensional architectures that inform tissue function. In biomedical research, specifically in drug discovery and personalized medicine, novel human-based three-dimensional (3D) models are needed to provide information with higher predictive value compared to state-of-the-art two-dimensional (2D) preclinical models. However, current in vitro models remain inadequate to recapitulate the complex and heterogenous architectures that underlie biology. Therefore, it would be beneficial to develop novel models that could capture both the 3D heterogeneity of tissue (e.g., through 3D bioprinting) and integrate vascularization that is necessary for tissue viability (e.g., through culture in tissue-on-chips). In this proof-of-concept study, we use elastin-like protein (ELP) engineered hydrogels as bioinks for constructing such tissue models, which can be directly dispensed onto endothelialized on-chip platforms. We show that this bioprinting process is compatible with both single cell suspensions of neural progenitor cells (NPCs) and spheroid aggregates of breast cancer cells. After bioprinting, both cell types remain viable in incubation for up to 14 days. These results demonstrate a first step toward combining ELP engineered hydrogels with 3D bioprinting technologies and on-chip platforms comprising vascular-like channels for establishing functional tissue models.

13.
Biomaterials ; 178: 63-72, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909038

RESUMEN

Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.


Asunto(s)
Células-Madre Neurales/trasplante , Recuperación de la Función/fisiología , Trasplante de Células Madre , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Ingeniería de Tejidos , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Hidrogeles/farmacología , Inyecciones , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Ratas Desnudas , Recuperación de la Función/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Polymers (Basel) ; 9(3)2017 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970780

RESUMEN

Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.

15.
ACS Cent Sci ; 3(12): 1294-1303, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29296670

RESUMEN

The development of experimental techniques capable of probing the viscoelasticity of soft materials over a broad range of time scales is essential to uncovering the physics that governs their behavior. In this work, we develop a microrheology technique that requires only 12 µL of sample and is capable of resolving dynamic behavior ranging in time scales from 10-6 to 10 s. Our approach, based on dynamic light scattering in the single-scattering limit, enables the study of polymer gels and other soft materials over a vastly larger hierarchy of time scales than macrorheology measurements. Our technique captures the viscoelastic modulus of polymer hydrogels with a broad range of stiffnesses from 10 to 104 Pa. We harness these capabilities to capture hierarchical molecular relaxations in DNA and to study the rheology of precious biological materials that are impractical for macrorheology measurements, including decellularized extracellular matrices and intestinal mucus. The use of a commercially available benchtop setup that is already available to a variety of soft matter researchers renders microrheology measurements accessible to a broader range of users than existing techniques, with the potential to reveal the physics that underlies complex polymer hydrogels and biological materials.

16.
ACS Macro Lett ; 4(7): 708-712, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35596492

RESUMEN

Semiconducting polymers play an important role in a wide range of optical and electronic material applications. It is widely accepted that the polymer ordering impacts charge transport in such devices. However, the connection between molecular ordering and device performance is difficult to predict due to the current need for a mathematical theory of the physics that dictate charge transport in semiconducting polymers. We present an analytical and computational description of semicrystalline conjugated polymer materials that captures the impact of polymer conformation on charge transport in heterogeneous thin films. We first develop an analytical theory for the statistical behavior of a polymer chain emanating from a crystallite, predicting the average distance to the first kink that would trap a charge. This analysis is used to define the conditions where percolation would lead to efficient transport through a semicrystalline material. We then establish a model that predicts the multiscale charge transport. This model is used to identify the speed limits of charge transport at short and long time scales for varying fraction of crystallinity. This work provides a rational framework to connect molecular organization to device performance.

17.
J Phys Chem B ; 116(46): 13793-805, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23098253

RESUMEN

A broad nanoscopic study of a wide-range of dendritic organic nonlinear optical (NLO) self-assembly molecular glasses reveals an intermediate thermal phase regime responsible for both enhanced electric field poling properties and strong phase stabilization after poling. In this paper, the focus is on dendritic NLO molecular glasses involving quadrupolar, liquid crystal, and hydrogen bonding self-assembly mechanisms that, along with chromophore dipole-dipole interactions, dictate phase stability. Specifically, dendritic face-to-face interactions involving arene-perfluoroarene are contrasted to coumarin-containing liquid crystal mesogen and cinnamic ester hydrogen interactions. Both the strength of dendritic interactions and the impact of dipole fields on the relaxation behavior have been analyzed by nanoscale energetic probing and local thermal transition analysis. The presence of dendritic groups was found to fundamentally alter transition temperatures and the molecular relaxation behavior. Thermal transition analysis revealed that molecules with dendritic groups possess an incipient transition (T(1)) preceding the glass transition temperature (T(2)) that provides increased stability and a well-defined electric field poling regime (T(1) < T < T(2)), in contrast to molecular groups lacking dendrons that exhibit only single transitions. On the basis of enthalpic and entropic energetic analyses, thermally active modes below T(1) were found to be intimately connected to the dendron structure. Their corresponding activation energies, which are related to thermal stability, increased moving from cinnamic ester groups to coumarin moieties to arene-perfluoroarene interacting groups. While dendritic NLO materials were found to possess only enthalpic stabilization energies at temperatures relevant for device operation (T < T(1)), the apparent molecular binding energies above T(1) contain a substantial amount (up to ~80%) of cooperative entropic energy. The multiple interactions (from dipole-dipole interactions to local noncovalent dendritic interactions) are discussed and summarized in a model that describes the thermal transitions and phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA