Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24401050

RESUMEN

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Asunto(s)
Síndrome de Fanconi/genética , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Mutación Missense , Enzima Bifuncional Peroxisomal/genética , Secuencia de Aminoácidos , Animales , Población Negra , Cromosomas Humanos Par 3 , Modelos Animales de Enfermedad , Síndrome de Fanconi/etnología , Femenino , Ligamiento Genético , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Linaje , Enzima Bifuncional Peroxisomal/química , Enzima Bifuncional Peroxisomal/metabolismo , Fenotipo , Análisis de Secuencia de ADN
2.
Mol Genet Metab ; 115(2-3): 128-140, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25943031

RESUMEN

PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.


Asunto(s)
Aciltransferasas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Niño , Discapacidades del Desarrollo/metabolismo , Fibroblastos , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Hipotonía Muscular/metabolismo , Mutación Missense , Piel/citología
3.
Biochim Biophys Acta ; 1792(9): 881-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596068

RESUMEN

Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, quadriceps sparing type commonly referred to as HIBM but also termed h-IBM or Inclusion Body Myopathy 2 (IBM2). The clinical manifestations begin with muscle weakness progressing over the next 10-20 years uniquely sparing the quadriceps until the most advanced stage of the disease. Histopathology of an HIBM muscle biopsy shows rimmed vacuoles on Gomori's trichrome stain, small fibers in groups and tubulofilaments without evidence of inflammation. In affected individuals distinct mutations have been identified in the GNE gene, which encodes the bifunctional enzyme uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase/N-acetyl-mannosamine (ManNAc) kinase (GNE/MNK). GNE/MNK catalyzes the first two committed steps in the biosynthesis of acetylneuraminic acid (Neu5Ac), an abundant and functionally important sugar. The generation of HIBM animal models has led to novel insights into both the disease and the role of GNE/MNK in pathophysiology. Recent advances in therapeutic approaches for HIBM, including administration of N-acetyl-mannosamine (ManNAc), a precursor of Neu5Ac will be discussed.


Asunto(s)
Complejos Multienzimáticos/genética , Miositis por Cuerpos de Inclusión/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético/patología , Mutación Missense , Miositis por Cuerpos de Inclusión/patología , Ácido N-Acetilneuramínico/metabolismo
4.
J Clin Invest ; 117(6): 1585-94, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17549255

RESUMEN

Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.


Asunto(s)
Hexosaminas/uso terapéutico , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Proteinuria/genética , Proteinuria/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedades Renales/tratamiento farmacológico , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microscopía Electrónica , Modelos Biológicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Embarazo , Proteinuria/tratamiento farmacológico
5.
FASEB J ; 22(11): 3846-52, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18653764

RESUMEN

Dominant disease alleles are attractive therapeutic targets for allele-specific gene silencing by small interfering RNA (siRNA). Sialuria is a dominant disorder caused by missense mutations in the allosteric site of GNE, coding for the rate-limiting enzyme of sialic acid biosynthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. The resultant loss of feedback inhibition of GNE-epimerase activity by CMP-sialic acid causes excessive production of free sialic acid. For this study we employed synthetic siRNAs specifically targeting the dominant GNE mutation c.797G>A (p.R266Q) in sialuria fibroblasts. We demonstrated successful siRNA-mediated down-regulation of the mutant allele by allele-specific real-time PCR. Importantly, mutant allele-specific silencing resulted in a significant decrease of free sialic acid, to within the normal range. Feedback inhibition of GNE-epimerase activity by CMP-sialic acid recovered after silencing demonstrating specificity of this effect. These findings indicate that allele-specific silencing of a mutated allele is a viable therapeutic strategy for autosomal dominant diseases, including sialuria.


Asunto(s)
Alelos , Ácido N-Acetilneuramínico Citidina Monofosfato/farmacología , Fibroblastos/enzimología , Genes Dominantes , Complejos Multienzimáticos/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Enfermedad por Almacenamiento de Ácido Siálico/enzimología , Sustitución de Aminoácidos , Células Cultivadas , Humanos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación Missense , Enfermedad por Almacenamiento de Ácido Siálico/tratamiento farmacológico , Enfermedad por Almacenamiento de Ácido Siálico/genética
6.
Am J Med Genet ; 108(3): 241-6, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11891694

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of metabolic disorders with multisystemic involvement characterized by abnormalities in the synthesis of N-linked oligosaccharides. The most common form, CDG-Ia, resulting from mutations in the gene encoding the enzyme phosphomannomutase (PMM2), manifests with severe abnormalities in psychomotor development, dysmorphic features and visceral involvement. While this disorder is panethnic, we present the first cases of CDG-Ia identified in an African American family with two affected sisters. The proband had failure to thrive in infancy, hypotonia, ataxia, cerebellar hypoplasia and developmental delay. On examination, she also exhibited strabismus, inverted nipples and an atypical perineal fat distribution, all features characteristic of CDG-Ia. Direct sequencing demonstrated that the patient had a unique genotype, T237M/c.565-571 delAGAGAT insGTGGATTTCC. The novel deletion-insertion mutation, which was confirmed by subcloning and sequencing of each allele, introduces a stop codon 11 amino acids downstream from the site of the deletion. The presence of this deletion-insertion mutation at cDNA position 565 suggests that this site in the PMM2 gene may be a hotspot for chromosomal breakage.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Fosfotransferasas (Fosfomutasas)/genética , Secuencia de Bases , Población Negra/genética , Preescolar , Trastornos Congénitos de Glicosilación/enzimología , Trastornos Congénitos de Glicosilación/patología , Análisis Mutacional de ADN , Femenino , Glicosilación , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fosfotransferasas (Fosfomutasas)/metabolismo , Eliminación de Secuencia
8.
Mol Genet Metab ; 86(1-2): 244-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16112887

RESUMEN

Aberrant glycosylation of dystroglycan occurs in certain muscular dystrophies, including hereditary inclusion body myopathy (HIBM). HIBM harbors a widely varying clinical severity and age of onset, which raised the suspicion of the presence of disease modifier genes. We considered the highly polymorphic dystroglycan gene (DAG1) as a feasible candidate modifier gene. DAG1 genomic DNA was sequenced for 32 HIBM patients, mainly of Persian-Jewish descent. Five novel DAG1 single nucleotide polymorphisms (SNPs) were identified, bringing the total number of SNPs to 19. However, no direct correlation between DAG1 SNPs and clinical severity of HIBM could be detected. Several identified SNPs substitute an amino acid and might modulate dystroglycan function or glycosylation status, and deserve further research. These data are valuable for future studies on the role of DAG1 in HIBM and other muscular dystrophies, especially those dystrophies that involve abnormal glycosylation of dystroglycan.


Asunto(s)
Distroglicanos/genética , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/patología , Polimorfismo de Nucleótido Simple , Adulto , Edad de Inicio , Secuencia de Bases , Cartilla de ADN , Humanos , Persona de Mediana Edad , Fenotipo , Reacción en Cadena de la Polimerasa , Índice de Severidad de la Enfermedad
9.
Glycobiology ; 15(11): 1102-10, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15987957

RESUMEN

Hereditary inclusion body myopathy (HIBM) is an autosomal recessive neuromuscular disorder associated with mutations in uridine diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 2-epimerase (GNE)/N-acetylmannosamine (ManNAc) kinase (MNK), the bifunctional and rate-limiting enzyme of sialic acid biosynthesis. We developed individual GNE and MNK enzymatic assays and determined reduced activities in cultured fibroblasts of patients, with HIBM harboring missense mutations in either or both the GNE and MNK enzymatic domains. To assess the effects of individual mutations on enzyme activity, normal and mutated GNE/MNK enzymatic domains were synthesized in a cell-free in vitro transcription-translation system and subjected to the GNE and MNK enzymatic assays. This cell-free system was validated for both GNE and MNK activities, and it revealed that mutations in one enzymatic domain (in GNE, G135V, V216A, and R246W; in MNK, A631V, M712T) affected not only that domain's enzyme activity, but also the activity of the other domain. Moreover, studies of the residual enzyme activity associated with specific mutations revealed a discrepancy between the fibroblasts and the cell-free systems. Fibroblasts exhibited higher residual activities of both GNE and MNK than the cell-free system. These findings add complexity to the tightly regulated system of sialic acid biosynthesis. This cell-free approach can be applied to other glycosylation pathway enzymes that are difficult to evaluate in whole cells because their substrate specificities overlap with those of ancillary enzymes.


Asunto(s)
Miositis por Cuerpos de Inclusión/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adulto , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Sistema Libre de Células , Células Cultivadas , Análisis Mutacional de ADN/métodos , Activación Enzimática/fisiología , Femenino , Fibroblastos/enzimología , Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Mutación , Miositis por Cuerpos de Inclusión/complicaciones , Miositis por Cuerpos de Inclusión/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA