Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant J ; 109(5): 1199-1212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34882879

RESUMEN

In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.


Asunto(s)
ARN Bicatenario , Complejo Silenciador Inducido por ARN , Proteínas Fluorescentes Verdes/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Complejo Silenciador Inducido por ARN/genética
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674483

RESUMEN

'Candidatus Phytoplasma mali' ('Ca. P. mali') has only one major membrane protein, the immunodominant membrane protein (Imp), which is regarded as being close to the ancestor of all phytoplasma immunodominant membrane proteins. Imp binds to actin and possibly facilitates its movement in the plant or insect host cells. However, protein sequences of Imp are quite diverse among phytoplasma species, thus resulting in difficulties in identifying conserved domains across species. In this work, we compare Imp protein sequences of 'Ca. P. mali' strain PM19 (Imp-PM19) with Imp of different strains of 'Ca. P. mali' and identify its actin-binding domain. Moreover, we show that Imp binds to the actin of apple (Malus x domestica), which is the host plant of 'Ca. P. mali'. Using molecular and scanning force spectroscopy analysis, we find that the actin-binding domain of Imp-PM19 contains a highly positively charged amino acid cluster. Our result could allow investigating a possible correlation between Imp variants and the infectivity of the corresponding 'Ca. P. mali' isolates.


Asunto(s)
Malus , Phytoplasma , Actinas/metabolismo , Malí , Plantas , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas
3.
Mol Plant Microbe Interact ; 32(11): 1487-1495, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31241412

RESUMEN

Phytoplasmas are the causative agent of numerous diseases of plant species all over the world, including important food crops. The mode by which phytoplasmas multiply and behave in their host is poorly understood and often based on genomic data. We used yeast two-hybrid screening to find new protein-protein interactions between the causal agent of apple proliferation 'Candidatus Phytoplasma mali' and its host plant. Here, we report that the 'Ca. P. mali' strain PM19 genome encodes a protein PM19_00185 that interacts with at least six different ubiquitin-conjugating enzymes (UBC; E2) of Arabidopsis thaliana. An in vitro ubiquitination assay showed that PM19_00185 is enzymatically active as E3 ligase with A. thaliana E2 UBC09 and Malus domestica E2 UBC10. We show that a nonhost bacteria (Pseudomonas syringae pv. tabaci) can grow in transgenic A. thaliana plant lines expressing PM19_00185. A connection of phytoplasma effector proteins with the proteasome proteolytic pathway has been reported before. However, this is, to our knowledge, the first time that a phytoplasma effector protein with E3 ligase activity has been reported.


Asunto(s)
Phytoplasma , Enfermedades de las Plantas , Ubiquitina-Proteína Ligasas , Arabidopsis/enzimología , Arabidopsis/parasitología , Malus/parasitología , Phytoplasma/enzimología , Phytoplasma/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
4.
Planta ; 249(2): 457-468, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30251012

RESUMEN

MAIN CONCLUSION: In this study, we show that aberrant pre-mRNAs from non-spliced and non-polyadenylated intron-containing transgenes are channelled to the RNA silencing pathway. In plants, improperly processed transcripts are called aberrant RNAs (ab-RNAs) and are eliminated by either RNA silencing or RNA decay mechanisms. Ab-RNAs transcribed from intronless genes are copied by RNA-directed RNA polymerases (RDRs) into double-stranded RNAs which are subsequently cleaved by DICER-LIKE endonucleases into small RNAs (sRNAs). In contrast, ab-RNAs from intron-containing genes are suggested to be channelled post-splicing to exonucleolytic degradation. Yet, it is not clear how non-spliced aberrant pre-mRNAs are eliminated. We reasoned that transient expression of agroinfiltrated intron-containing transgenes in Nicotiana benthamiana would allow us to study the steady-state levels of non-spliced pre-mRNAs. SRNA deep sequencing of the agroinfiltrated transgenes revealed the presence of sRNAs mapping to the entire non-spliced pre-mRNA suggesting that RDRs (most likely RDR6) processed aberrant non-spliced pre-mRNAs. Primary and secondary sRNAs with lengths of 18-25 nucleotides (nt) were detected, with the most prominent sRNA size class of 22 nt. SRNAs also mapped to the terminator sequence, indicating that RDR substrates also comprised read-through transcripts devoid of polyadenylation tail. Importantly, the occurring sRNAs efficiently targeted cognate mRNA for degradation but failed to cleave the non-spliced pre-mRNA, corroborating the notion that sRNAs are not triggering RNA cleavage in the nucleus.


Asunto(s)
Intrones , Precursores del ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes , Northern Blotting , Genes de Plantas/genética , Intrones/genética , Precursores del ARN/genética , Empalme del ARN , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Nicotiana/genética , Nicotiana/metabolismo , Transgenes/genética
5.
Plant J ; 87(2): 202-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27121647

RESUMEN

RNA-directed DNA methylation (RdDM) in plants has been extensively studied, but the RNA molecules guiding the RdDM machinery to their targets are still to be characterized. It is unclear whether these molecules require full complementarity with their target. In this study, we have generated Nicotiana tabacum (Nt) plants carrying an infectious tomato apical stunt viroid (TASVd) transgene (Nt-TASVd) and a non-infectious potato spindle tuber viroid (PSTVd) transgene (Nt-SB2). The two viroid sequences exhibit 81% sequence identity. Nt-TASVd and Nt-SB2 plants were genetically crossed. In the progeny plants (Nt-SB2/TASVd), deep sequencing of small RNAs (sRNAs) showed that TASVd infection was associated with the accumulation of abundant small interfering RNAs (siRNAs) that mapped along the entire TASVd but only partially matched the SB2 transgene. TASVd siRNAs efficiently targeted SB2 RNA for degradation, but no transitivity was detectable. Bisulfite sequencing in the Nt-SB2/TASVd plants revealed that the TASVd transgene was targeted for dense cis-RdDM along its entire sequence. In the same plants, the SB2 transgene was targeted for trans-RdDM. The SB2 methylation pattern, however, was weak and heterogeneous, pointing to a positive correlation between trigger-target sequence identity and RdDM efficiency. Importantly, trans-RdDM on SB2 was also detected at sites where no homologous siRNAs were detected. Our data indicate that RdDM efficiency depends on the trigger-target sequence identity, and is not restricted to siRNA occupancy. These findings support recent data suggesting that RNAs with sizes longer than 24 nt (>24-nt RNAs) trigger RdDM.


Asunto(s)
Metilación de ADN/fisiología , ARN de Planta/fisiología , Northern Blotting , Metilación de ADN/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , ARN de Planta/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiología
6.
RNA Biol ; 12(3): 268-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826660

RESUMEN

In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.


Asunto(s)
Nicotiana/virología , Células Vegetales/virología , Edición de ARN , Precursores del ARN/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Viral/metabolismo , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virología , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virología , Metilación de ADN , Intrones , Datos de Secuencia Molecular , Tubérculos de la Planta/virología , Plantas Modificadas Genéticamente/virología , Precursores del ARN/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Solanum tuberosum/virología , Viroides/genética , Viroides/metabolismo , Replicación Viral/genética
7.
Virus Genes ; 50(2): 340-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25537949

RESUMEN

Single-stranded DNA geminiviruses replicate via double-stranded DNA intermediates forming mini-chromosomes that are targets for transcriptional gene silencing (TGS) in plants. The ability of the cotton leaf curl Kokhran virus (CLCuKoV)-cotton leaf curl Multan betasatellite (CLCuMuB) proteins, replication-associated protein (Rep), transcriptional activator protein (TrAP), C4, V2 and ßC1, to suppress TGS was investigated by using the Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant potato virus X vector carrying Rep, TrAP or ßC1 resulted in re-expression of GFP. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. These results indicated that Rep, TrAP and ßC1 proteins of CLCuKoV-CLCuMuB can re-activate the expression of a transcriptionally silenced GFP transgene in N. benthamiana. Although Rep, TrAP, or ßC1 proteins have, for other begomoviruses or begomoviruses-betasatellites, been previously shown to have TGS suppressor activity, this is the first report demonstrating that a single begomovirus-betasatellite complex encodes three suppressors of TGS.


Asunto(s)
Begomovirus/metabolismo , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Virus Satélites/metabolismo , Transactivadores/metabolismo , Proteínas Virales/metabolismo , Begomovirus/genética , Proteínas Fluorescentes Verdes/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Potexvirus/genética , Potexvirus/metabolismo , Virus Satélites/genética , Nicotiana/metabolismo , Nicotiana/virología , Transactivadores/genética , Activación Transcripcional , Proteínas Virales/genética
8.
J Gen Virol ; 95(Pt 2): 486-495, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24187016

RESUMEN

Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae) causes heavy yield losses in sweet potato plants co-infected with other viruses. The dsRNA-specific class 1 RNase III-like endoribonuclease (RNase3) encoded by SPCSV suppresses post-transcriptional gene silencing and eliminates antiviral defence in sweet potato plants in an endoribonuclease activity-dependent manner. RNase3 can cleave long dsRNA molecules, synthetic small interfering RNAs (siRNAs), and plant- and virus-derived siRNAs extracted from sweet potato plants. In this study, conditions for efficient expression and purification of enzymically active recombinant RNase3 were established. Similar to bacterial class 1 RNase III enzymes, RNase3-Ala (a dsRNA cleavage-deficient mutant) bound to and processed double-stranded siRNA (ds-siRNA) as a dimer. The results support the classification of SPCSV RNase3 as a class 1 RNase III enzyme. There is little information about the specificity of RNase III enzymes on small dsRNAs. In vitro assays indicated that ds-siRNAs and microRNAs (miRNAs) with a regular A-form conformation were cleaved by RNase3, but asymmetrical bulges, extensive mismatches and 2'-O-methylation of ds-siRNA and miRNA interfered with processing. Whereas Mg(2+) was the cation that best supported the catalytic activity of RNase3, binding of 21 nt small dsRNA molecules was most efficient in the presence of Mn(2+). Processing of long dsRNA by RNase3 was efficient at pH 7.5 and 8.5, whereas ds-siRNA was processed more efficiently at pH 8.5. The results revealed factors that influence binding and processing of small dsRNA substrates by class 1 RNase III in vitro or make them unsuitable for processing by the enzyme.


Asunto(s)
Crinivirus/enzimología , ARN Bicatenario/metabolismo , Ribonucleasa III/metabolismo , Proteínas Virales/metabolismo , Cationes Bivalentes/metabolismo , Activadores de Enzimas/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Ipomoea batatas/virología , Magnesio/metabolismo , Manganeso/metabolismo , Enfermedades de las Plantas/virología , Unión Proteica , Multimerización de Proteína , Ribonucleasa III/química , Proteínas Virales/química , Factores de Virulencia/química , Factores de Virulencia/metabolismo
9.
RNA Biol ; 11(7): 934-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25180820

RESUMEN

In plants, endogenes are less prone to RNA silencing than transgenes. While both can be efficiently targeted by small RNAs for post-transcriptional gene silencing (PTGS), generally only transgene PTGS is accompanied by transitivity, RNA-directed DNA methylation (RdDM) and systemic silencing. In order to investigate whether a transgene could mimick an endogene and thus be less susceptible to RNA silencing, we generated an intron-containing, endogene-resembling GREEN FLUORESCENT PROTEIN (GFP) transgene (GFP(endo)). Upon agroinfiltration of a hairpin GFP (hpF) construct, transgenic Nicotiana benthamiana plants harboring GFP(endo) (Nb-GFP(endo)) were susceptible to local PTGS. Yet, in the local area, PTGS was not accompanied by RdDM of the GFP(endo) coding region. Importantly, hpF-agroinfiltrated Nb-GFP(endo) plants were resistant to systemic silencing. For reasons of comparison, transgenic N. benthamiana plants (Nb-GFP(cDNA)) carrying a GFP cDNA transgene (GFP(cDNA)) were included in the analysis. HpF-agroinfiltrated Nb-GFP(cDNA) plants exhibited local PTGS and RdDM. In addition, systemic silencing was established in Nb-GFP(cDNA) plants. In agreement with previous reports using grafted scions, in systemically silenced tissue, siRNAs mapping to the 3' of GFP were predominantly detectable by Northern blot analysis. Yet, in contrast to other reports, in systemically silenced leaves, PTGS was also accompanied by dense RdDM comprising the entire GFP(cDNA) coding region. Overall, our analysis indicated that cDNA transgenes are prone to systemic PTGS and RdDM, while endogene-resembling ones are resistant to RNA silencing.


Asunto(s)
Metilación de ADN , Nicotiana/genética , Hojas de la Planta/crecimiento & desarrollo , Transgenes , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Intrones , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo
10.
Viruses ; 15(10)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37896771

RESUMEN

Beet curly top Iran virus (BCTIV) is a yield-limiting geminivirus belonging to the becurtovirus genus. The genome organization of BCTIV is unique such that the complementary strand of BCTIV resembles Mastrevirus, whereas the virion strand organization is similar to the Curtovirus genus. Geminiviruses are known to avoid the plant defense system by suppressing the RNA interference mechanisms both at the transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS) levels. Multiple geminivirus genes have been identified as viral suppressors of RNA silencing (VSR) but VSR activity remains mostly elusive in becurtoviruses. We found that BCTIV-V2 and -Rep could suppress specific Sense-PTGS mechanisms with distinct efficiencies depending on the nature of the silencing inducer and the target gene. Local silencing induced by GFP inverted repeat (IR) could not be suppressed by V2 but was partially reduced by Rep. Accordingly, we documented that Rep but not V2 could suppress systemic silencing induced by GFP-IR. In addition, we showed that the VSR activity of Rep was partly regulated by RNA-dependent RNA Polymerase 6 (RDR6), whereas the VSR activity of V2 was independent of RDR6. Domain mapping for Rep showed that an intact Rep protein was required for the suppression of PTGS. In summary, we showed that BCTIV-Rep and -V2 function as silencing suppressors with distinct modes of action.


Asunto(s)
Beta vulgaris , Geminiviridae , Interferencia de ARN , Proteínas Virales/genética , Proteínas Virales/metabolismo , Irán , Nicotiana , Enfermedades de las Plantas
11.
Data Brief ; 45: 108706, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426005

RESUMEN

Double-stranded RNA (dsRNA) applications have emerged as promising alternatives to chemical plant pesticides. It has been proposed that the protective effect of dsRNA is mediated by the RNA interference (RNAi) mechanism. Small RNAs (sRNAs) are one of the landmarks of RNAi mechanisms. Two classes of sRNAs appear upon RNAi, triggered by dsRNA: The cleavage products of the dsRNA mapping directly to the dsRNA sequence and the transitive sRNAs mapping to the target transcript outside of the dsRNA sequence. Therefore, the sRNA-seq data obtained from dsRNA-treated plants have been exclusively analysed in the context of the target genes and the outcome has been considered essential to evaluate the underlying mechanism of dsRNA mediated plant protection. Using high-pressure spraying technology (HPST), we have applied a GFP targeting 139bp-long dsRNA on wild type (WT) and GFP expressing (16C) Nicotiana benthamiana plants in biological triplicates. As a control, we applied water with HPST on 16C N. benthamiana. We have acquired sRNA-seq data on the treated and control leaves 5 days post spraying. In this dataset, we have expanded our sRNA-seq analysis from the target GFP transgene sequence to the whole transcriptome of N. benthamiana to provide the community with a resource for the small RNA landscape after high-pressure spraying in 16C and WT samples. Furthermore, we have provided a comparison of sRNA landscape between WT and 16C lines.

12.
Microorganisms ; 10(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889125

RESUMEN

It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches' broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the cytoplasm and the nucleus. The SAP11-like effector of Candidatus Phytoplasma mali strain PM19 (SAP11PM19) localizes in both compartments of plant cells. We show here that SAP11PM19 can destabilize TCPs in both the nucleus and the cytoplasm. However, expression of SAP11PM19 exclusively in the nucleus resulted in the disappearance of leaf phenotypes while still showing the witches' broom phenotype. Moreover, we show that SAP11PM19 can not only destabilize TCPs but also relocalizes these proteins in the nucleus. Interestingly, three different transgenic Nicotiana species expressing SAP11PM19 show all the same witches' broom phenotype but different leaf phenotypes. A possible mechanism of SAP11-TCP interaction is discussed.

13.
J Gen Virol ; 92(Pt 9): 2222-2226, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21593273

RESUMEN

The helper component-proteinase (HC-Pro) is a multifunctional protein found among potyviruses. With respect to its silencing suppressor function, small RNA binding appears to be the major activity of HC-Pro. HC-Pro could also exhibit other suppressor activities. HC-Pro may inhibit the Hua Enhancer 1 (HEN1) activity. There is indirect evidence showing that either transient or stable expression of HC-Pro in plants results in an increase of non-methylated small RNAs. Here, we demonstrated that recombinant Zucchini yellow mosaic virus (ZYMV) HC-Pro inhibited the methyltransferase activity of HEN1 in vitro. Moreover, we found that the HC-Pro(FINK) mutant, which has lost small RNA-binding activity, inhibited HEN1 activity, while the truncated proteins and total soluble bacterial proteins did not. Using the ELISA-binding assay, we provided evidence that the HC-Pro(FRNK) wild-type and HC-Pro(FINK) both bound to HEN1, with HC-Pro(FRNK) binding stronger than HC-Pro(FINK). Motif mapping analysis revealed that the amino acids located between positions 139 and 320 of ZYMV HC-Pro were associated with HEN1 interaction.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno , Metiltransferasas/antagonistas & inhibidores , Potyvirus/enzimología , Potyvirus/patogenicidad , Proteínas Virales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Mutación Missense , Unión Proteica , Mapeo de Interacción de Proteínas , Eliminación de Secuencia
14.
Biol Chem ; 392(10): 937-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21871010

RESUMEN

The multifunctional helper component proteinase (HC-Pro) of potyviruses contains an autoproteolytic function that, together with the protein 1 (P1) and NIa proteinase, processes the polyprotein into mature proteins. In this study, we analysed the autoproteolytic active domain of zucchini yellow mosaic virus (ZYMV) HC-Pro. Several Escherichia coli-expressed MBP:HC-Pro:GFP mutants containing deletions or point mutations at either the N- or C-terminus of the HC-Pro protein were examined. Our results showed that amino acids essential for the proteolytic activity of ZYMV HC-Pro are distinct from those of the tobacco etch virus HC-Pro, although the amino acid sequences in the proteolytic active domain are conserved among potyviruses.


Asunto(s)
Potyvirus/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Escherichia coli/genética , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Potyvirus/química , Potyvirus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
15.
Planta ; 234(4): 699-707, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21617990

RESUMEN

In plants, transgenes frequently become spontaneously silenced for unknown reasons. Typically, transgene silencing involves the generation of small interfering RNAs (siRNAs) that directly or indirectly target cognate DNA and mRNA sequences for methylation and degradation, respectively. In this report, we compared spontaneous silencing of a transgene in Nicotiana benthamiana and Nicotiana tabacum. In both species, abundant siRNAs were produced. In N. benthamiana, the self-silencing process involved mRNA degradation and dense DNA methylation of the homologous coding region. In N. tabacum, self-silencing occurred without complete mRNA degradation and with low methylation of the cognate coding region. Our data indicated that in plants, siRNA-mediated spontaneous silencing is, in addition to mRNA degradation, based on translational inhibition. Differences in the initiation and establishment of self-silencing together with marked differences in the degree of de novo DNA methylation showed that the mechanistic details of RNA silencing, although largely conserved, may vary also in genetically close plant species.


Asunto(s)
Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Transgenes/genética , Cotiledón/genética , Cotiledón/metabolismo , ADN Complementario/genética , ADN de Plantas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , Nicotiana/metabolismo , Transcripción Genética
16.
Protein Expr Purif ; 75(1): 40-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20674747

RESUMEN

HC-Pro is a helper component-proteinase which acts as a multifunctional protein in the potyviral life cycle. Apart from its proteolytic activity, HC-Pro has the capacity to bind duplex small RNAs (sRNAs). To investigate HC-Pro-mediated sRNA binding in vitro, high amounts of purified protein are required. For this purpose, the Zucchini yellow mosaic virus (ZYMV) HC-Pro was expressed as a fusion with hexa-histidine (6xHis) or maltose-binding protein (MBP) in Escherichia coli. The expressed fusion proteins were purified by affinity chromatography. 6xHis:HC-Pro and MBP:HC-Pro were partially soluble. Electrophoretic mobility-shift assays demonstrated that only MBP:HC-Pro exhibits the sRNA binding activity. The recombinant HC-Pro bound 21 bp siRNAs as well as 19 bp and 24 bp siRNAs. A point mutation in the highly conserved FRNK box produced the HC-Pro(FINK) protein, previously shown to be associated with reduced viral symptoms and weak sRNA binding. In this study, sRNA binding of the MBP:HA-HC-Pro(FINK) was not detectable. The high yield of purified HC-Pro offers the possibility to study the biochemistry of the protein in detail.


Asunto(s)
Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Histidina/genética , Proteínas de Unión a Maltosa/genética , Virus del Mosaico/genética , Oligopéptidos/genética , ARN Interferente Pequeño/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Cucurbita/virología , Cisteína Endopeptidasas/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Histidina/aislamiento & purificación , Histidina/metabolismo , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de Unión a Maltosa/metabolismo , Virus del Mosaico/aislamiento & purificación , Virus del Mosaico/metabolismo , Oligopéptidos/aislamiento & purificación , Oligopéptidos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/aislamiento & purificación
17.
Microorganisms ; 9(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34442835

RESUMEN

SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of 'Candidatus Phytoplasma mali' ('Ca. P. mali') strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches' broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.

18.
Plant J ; 60(5): 840-51, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19702668

RESUMEN

So far, conventional hairpin RNA (hpRNA) constructs consisting of an inverted repeat (IR) of target promoters directly introduced into an expression cassette have been used to mediate de novo DNA methylation. Transcripts of such constructs resemble mRNA molecules, and are likely to be exported to the cytoplasm. The presence of hpRNAs in the cytoplasm and the nucleus may account for the simultaneous activation of post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM). We hypothesized that by retaining hpRNAs in the nucleus, efficient induction of only RdDM may be achieved. Thus, we introduced into tobacco a transgene containing an intron into which an IR of a target promoter was inserted. The intronic hpRNA initiated highly specific cis- and trans-methylation, but did not induce PTGS. No spreading of methylation into sequences flanking the region of homology between the hpRNA and the target DNA was detectable. The efficient methylation-directing activity of the intronic hpRNA may indicate a previously unrecognized role of introns, potentially regulating gene expression at the transcriptional level.


Asunto(s)
Metilación de ADN , Secuencias Invertidas Repetidas/fisiología , Nicotiana/genética , ARN de Planta/fisiología , Secuencia de Bases , Proteínas Fluorescentes Verdes/análisis , Intrones/fisiología , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Nicotiana/metabolismo , Transgenes
19.
Plant Mol Biol ; 73(4-5): 439-47, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20364297

RESUMEN

In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.


Asunto(s)
Metilación de ADN/genética , ADN Recombinante/genética , Nicotiana/genética , Nicotiana/virología , Virus Satélite del Mosaico del Tabaco/genética , Transgenes/genética , Viroides/genética , Secuencia de Bases , Northern Blotting , Southern Blotting , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Virus de Plantas/genética , Estabilidad del ARN/genética , Análisis de Secuencia de ADN
20.
Biol Chem ; 391(2-3): 271-281, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20030588

RESUMEN

Ectopically expressed rice yellow mottle virus P1 fusion proteins were found to be cleaved in planta and in Escherichia coli. Cleavage takes place in the absence of bacterial protease activity, indicating that the P1 fusion is autocatalytically processed independently of host factors. N-terminal sequencing of the C-terminal cleavage product of transiently expressed P1/GFP (green fluorescence protein) in Nicotiana benthamiana showed that the cleavage site is located between the first two amino acids (aa) downstream of the P1 sequence. Mutagenesis experiments revealed that a phenylalanine to valine substitution at position 157 of the P1 aa sequence impairs proper cleavage, which is nearly unaffected by replacement of phenylalanine with tyrosine. Deletion of methionine(159) (first GFP aa residue) appeared to not affect P1/GFP cleavage. N-terminal P1-tagging with GFP turned out to impair autocleavage, whereas a small His-tag could not fully prevent cleavage. Additionally, a modified P1/GFP carrying an N-terminal deletion of 81 aa was not cleaved. These findings indicate that this region is involved in the proteolysis mechanism and that large N-terminal fusion partners might affect correct folding of the P1 necessary for self-catalysis.


Asunto(s)
Oryza/virología , Virus de Plantas/genética , Procesamiento Proteico-Postraduccional , Selección Genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Oryza/genética , Oryza/metabolismo , Virus de Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA