Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 21(5): 5715-36, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482144

RESUMEN

We investigate the nonlinear propagation of an ultra-short, 150 fs, optical pulse along the waveguide of a quantum dot (QD) laser operating above threshold. We demonstrate that among the various nonlinear processes experienced by the propagating pulse, four-wave mixing (FWM) between the pulse and the two oscillating counter-propagating cw fields of the laser is the dominant one. FWM has two important consequences. One is the creation of a spectral hole located in the vicinity of the cw oscillating frequency. The width of the spectral hole is determined by an effective carrier and gain relaxation time. The second is a modification of the shape of the trailing edge of the pulse. The wave mixing involves first and second order processes which result in a complicated interaction among several fields inside the cavity, some of which are cw while the others are time varying, all propagating in both directions. The nonlinear pulse propagation is analyzed using two complementary theoretical approaches. One is a semi-analytical model which considers only the wave mixing interaction between six field components, three of which propagate in each direction (two cw fields and four time-varying signals). This model predicts the deformation of the tail of the output signal by a secondary idler wave, produced in a cascaded FWM process, which co-propagates with the original injected pulse. The second approach is a finite-difference time-domain simulation, which considers also additional nonlinear effects, such as gain saturation and self-phase modulation. The theoretical results are confirmed by a series of experiments in which the time dependent amplitude and phase of the pulse after propagation are measured using the cross-frequency-resolved optical gating technique.

2.
Opt Express ; 20(4): 3825-31, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418139

RESUMEN

We present a hybrid integrated photonic circuit on a silicon-on-insulator substrate that performs ultra high-speed all-optical wavelength conversion. The chip incorporates a 1.25 mm non-linear SOA mounted on the SOI board using gold-tin bumps as small as 14 µm. Τhe device performs chirp filtering and signal polarity inversion with two multi-mode interference (MMI) - based cascaded delay interferometers (DIs) monolithically integrated on the same SOI substrate. Full free spectral range (FSR) tuning of the DIs is accomplished by two independently tuneable on-chip thermal heaters. We demonstrate 160Gb/s all-optical wavelength conversion with power penalties of less than 4.6dB.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(1 Pt 2): 016206, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14995692

RESUMEN

An in-depth theoretical as well as experimental analysis of the nonlinear dynamics in semiconductor lasers with active optical feedback is presented. Use of a monolithically integrated multisection device of submillimeter total length provides access to the short-cavity regime. By introducing an amplifier section as a special feature, phase and strength of the feedback can be separately tuned. In this way, the number of modes involved in the laser action can be adjusted. We predict and observe specific dynamical scenarios. Bifurcations mediate various transitions in the device output, from single-mode steadystate to self-pulsation and between different kinds of self-pulsations, reaching eventually chaotic behavior in the multimode limit.

4.
9.
Phys Rev B Condens Matter ; 53(4): 1907-1916, 1996 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9983651
11.
Phys Rev B Condens Matter ; 53(7): 3634-3637, 1996 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9983909
15.
Phys Rev Lett ; 94(16): 163901, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15904226

RESUMEN

Two delay-coupled semiconductor lasers are studied in the regime where the coupling delay is comparable to the time scales of the internal laser oscillations. Detuning the optical frequency between the two lasers, novel delay-induced scenarios leading from optical frequency locking to successive states of periodic intensity pulsations are observed. We demonstrate and analyze these dynamical phenomena experimentally using two distinct laser configurations. A theoretical treatment reveals the universal character of our findings for delay-coupled systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA