Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 152(5): 1119-33, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452857

RESUMEN

The activation of N-methyl-D-aspartate-receptors (NMDARs) in synapses provides plasticity and cell survival signals, whereas NMDARs residing in the neuronal membrane outside synapses trigger neurodegeneration. At present, it is unclear how these opposing signals are transduced to and discriminated by the nucleus. In this study, we demonstrate that Jacob is a protein messenger that encodes the origin of synaptic versus extrasynaptic NMDAR signals and delivers them to the nucleus. Exclusively synaptic, but not extrasynaptic, NMDAR activation induces phosphorylation of Jacob at serine-180 by ERK1/2. Long-distance trafficking of Jacob from synaptic, but not extrasynaptic, sites depends on ERK activity, and association with fragments of the intermediate filament α-internexin hinders dephosphorylation of the Jacob/ERK complex during nuclear transit. In the nucleus, the phosphorylation state of Jacob determines whether it induces cell death or promotes cell survival and enhances synaptic plasticity.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Sistema de Señalización de MAP Quinasas , Ratones , Neuronas/citología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Ratas
2.
EMBO J ; 42(4): e112453, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594364

RESUMEN

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Sinapsis/metabolismo
3.
EMBO J ; 41(7): e110057, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35285533

RESUMEN

Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro-secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro-secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi-related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome-mediated and endo-lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto-architecture necessitates long-distance protein transport that combines degradation with signaling functions.


Asunto(s)
Proteostasis , Sinapsis , Autofagosomas/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Sinapsis/metabolismo
4.
Cell Mol Life Sci ; 80(8): 228, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491479

RESUMEN

Nuclear Ca2+ waves elicited by NMDAR and L-type voltage-gated Ca2+-channels as well as protein transport from synapse-to-nucleus are both instrumental in control of plasticity-related gene expression. At present it is not known whether fast [Ca2+]n transients converge in the nucleus with signaling of synapto-nuclear protein messenger. Jacob is a protein that translocate a signalosome from N-methyl-D-aspartate receptors (NMDAR) to the nucleus and that docks this signalosome to the transcription factor CREB. Here we show that the residing time of Jacob in the nucleoplasm strictly correlates with nuclear [Ca2+]n transients elicited by neuronal activity. A steep increase in [Ca2+]n induces instantaneous uncoupling of Jacob from LaminB1 at the nuclear lamina and promotes the association with the transcription factor cAMP-responsive element-binding protein (CREB) in hippocampal neurons. The size of the Jacob pool at the nuclear lamina is controlled by previous activity-dependent nuclear import, and thereby captures the previous history of NMDAR-induced nucleocytoplasmic shuttling. Moreover, the localization of Jacob at the nuclear lamina strongly correlates with synaptic activity and [Ca2+]n waves reflecting ongoing neuronal activity. In consequence, the resulting extension of the nuclear residing time of Jacob amplifies the capacity of the Jacob signalosome to regulate CREB-dependent gene expression and will, thereby, compensate for the relatively small number of molecules reaching the nucleus from individual synapses.


Asunto(s)
Núcleo Celular , Neuronas , Neuronas/metabolismo , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Transducción de Señal , Expresión Génica , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Mol Cell Neurosci ; 125: 103854, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084990

RESUMEN

The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.


Asunto(s)
Núcleo Celular , Sinapsis , Transporte de Proteínas/fisiología , Núcleo Celular/metabolismo , Sinapsis/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Neuronas/fisiología
6.
Anal Chem ; 95(41): 15236-15244, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792961

RESUMEN

Lipid analysis gained significant importance due to the enormous range of lipid functions, e.g., energy storage, signaling, or structural components. Whole lipidomes can be quantitatively studied in-depth thanks to recent analytical advancements. However, the systematic comparison of thousands of distinct lipidomes remains challenging. We introduce LipidSpace, a standalone tool for analyzing lipidomes by assessing their structural and quantitative differences. A graph-based comparison of lipid structures is the basis for calculating structural space models and subsequently computing lipidome similarities. When adding study variables such as body weight or health condition, LipidSpace can determine lipid subsets across all lipidomes that describe these study variables well by utilizing machine-learning approaches. The user-friendly GUI offers four built-in tutorials and interactive visual interfaces with pdf export. Many supported data formats allow an efficient (re)analysis of data sets from different sources. An integrated interactive workflow guides the user through the quality control steps. We used this suite to reanalyze and combine already published data sets (e.g., one with about 2500 samples and 576 lipids in one run) and made additional discoveries to the published conclusions with the potential to fill gaps in the current lipid biology understanding. LipidSpace is available for Windows or Linux (https://lifs-tools.org).


Asunto(s)
Lipidómica , Lípidos , Lípidos/análisis
7.
Protein Expr Purif ; 193: 106057, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077781

RESUMEN

Lamin B1 is an intermediate filament protein that is a core component of the nuclear lamina. Structural studies and biochemical characterization of lamin B1 are severely hampered by the tendency of the protein to form inclusion bodies in E. coli bacterial expression systems. Therefore, the purity and consistency of the protein varies from batch to batch. In this work, we have purified a tag-free lamin B1 protein from a soluble fraction following bacterial expression. We also checked the functional properties of the purified as well as of the subsequently lyophilised protein. The current protocol helps to purify functional lamin B1 in a single step.


Asunto(s)
Escherichia coli , Lamina Tipo B , Escherichia coli/genética , Escherichia coli/metabolismo , Lamina Tipo B/química , Lamina Tipo B/metabolismo
8.
Cell Mol Life Sci ; 78(6): 2621-2639, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33340068

RESUMEN

The complex morphology of neurons, the specific requirements of synaptic neurotransmission and the accompanying metabolic demands create a unique challenge for proteostasis. The main machineries for neuronal protein synthesis and degradation are localized in the soma, while synaptic junctions are found at vast distances from the cell body. Sophisticated mechanisms must, therefore, ensure efficient delivery of newly synthesized proteins and removal of faulty proteins. These requirements are exacerbated at presynaptic sites, where the demands for protein turnover are especially high due to synaptic vesicle release and recycling that induces protein damage in an intricate molecular machinery, and where replacement of material is hampered by the extreme length of the axon. In this review, we will discuss the contribution of the two major pathways in place, autophagy and the endolysosomal system, to presynaptic protein turnover and presynaptic function. Although clearly different in their biogenesis, both pathways are characterized by cargo collection and transport into distinct membrane-bound organelles that eventually fuse with lysosomes for cargo degradation. We summarize the available evidence with regard to their degradative function, their regulation by presynaptic machinery and the cargo for each pathway. Finally, we will discuss the interplay of both pathways in neurons and very recent findings that suggest non-canonical functions of degradative organelles in synaptic signalling and plasticity.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo
9.
EMBO Rep ; 20(12): e47743, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31650708

RESUMEN

The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoactivation/photoconversion experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin toward the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 (pericentriolar material 1 protein) satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively, the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers, hence sustaining initial neuronal development.


Asunto(s)
Actinas/metabolismo , Conos de Crecimiento/metabolismo , Neurogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centrosoma/metabolismo , Hipocampo/citología , Hipocampo/embriología , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Ratas
10.
EMBO J ; 35(17): 1923-34, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27458189

RESUMEN

Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Procesamiento Proteico-Postraduccional , Animales , Supervivencia Celular , Células Cultivadas , Agonistas de Aminoácidos Excitadores/metabolismo , Hipocampo/patología , Humanos , Análisis por Micromatrices , N-Metilaspartato/metabolismo , Ratas , Ubiquitinación
11.
Anal Chem ; 92(20): 13672-13676, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32865986

RESUMEN

We introduce STAMPS, a pathway-centric web service for the development of targeted proteomics assays. STAMPS guides the user by providing several intuitive interfaces for a rapid and simplified method design. Applying our curated framework to signaling and metabolic pathways, we reduced the average assay development time by a factor of ∼150 and revealed that the insulin signaling is actively controlled by protein abundance changes in insulin-sensitive and -resistance states. Although at the current state STAMPS primarily contains mouse data, it was designed for easy extension with additional organisms.


Asunto(s)
Redes y Vías Metabólicas , Proteómica/métodos , Transducción de Señal , Animales , Cromatografía Líquida de Alta Presión , Bases de Datos de Proteínas , Insulina/metabolismo , Redes y Vías Metabólicas/genética , Ratones , Péptidos/análisis , Transducción de Señal/genética , Espectrometría de Masas en Tándem
12.
EMBO Rep ; 18(6): 962-981, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28420656

RESUMEN

Oligomeric amyloid-ß (Aß) 1-42 disrupts synaptic function at an early stage of Alzheimer's disease (AD). Multiple posttranslational modifications of Aß have been identified, among which N-terminally truncated forms are the most abundant. It is not clear, however, whether modified species can induce synaptic dysfunction on their own and how altered biochemical properties can contribute to the synaptotoxic mechanisms. Here, we show that a prominent isoform, pyroglutamated Aß3(pE)-42, induces synaptic dysfunction to a similar extent like Aß1-42 but by clearly different mechanisms. In contrast to Aß1-42, Aß3(pE)-42 does not directly associate with synaptic membranes or the prion protein but is instead taken up by astrocytes and potently induces glial release of the proinflammatory cytokine TNFα. Moreover, Aß3(pE)-42-induced synaptic dysfunction is not related to NMDAR signalling and Aß3(pE)-42-induced impairment of synaptic plasticity cannot be rescued by D1-agonists. Collectively, the data point to a scenario where neuroinflammatory processes together with direct synaptotoxic effects are caused by posttranslational modification of soluble oligomeric Aß and contribute synergistically to the onset of synaptic dysfunction in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Sinapsis/fisiología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Animales , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuroinmunomodulación , Plasticidad Neuronal , Fragmentos de Péptidos/genética , Isoformas de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
13.
Cereb Cortex ; 28(7): 2594-2609, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790938

RESUMEN

Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.


Asunto(s)
Potenciales de Acción/genética , Canales de Calcio Tipo T/deficiencia , Giro Dentado/citología , Neuronas/fisiología , Animales , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Vía Perforante/fisiología , Ratas , Ratas Wistar , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
14.
PLoS Genet ; 12(3): e1005907, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977770

RESUMEN

Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR)-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB). Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS), a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH) associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH) positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP) at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF) activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko) mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo
15.
Nature ; 486(7402): 256-60, 2012 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-22699619

RESUMEN

Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αß(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Autístico/genética , Conducta Animal/fisiología , Proteínas del Tejido Nervioso/genética , Agitación Psicomotora/genética , Animales , Trastorno Autístico/patología , Espinas Dendríticas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Agitación Psicomotora/patología , Receptores Ionotrópicos de Glutamato/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba , Vocalización Animal/fisiología
16.
Mol Cell Proteomics ; 15(2): 368-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26307175

RESUMEN

The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.


Asunto(s)
Espectrometría de Masas/métodos , Plasticidad Neuronal/genética , Proteómica/métodos , Sinapsis/genética , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Proteínas/genética , Proteínas/metabolismo , Sinapsis/metabolismo
17.
Biochemistry ; 56(19): 2467-2476, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28437073

RESUMEN

A crucial event in calcium signaling is the transition of a calcium sensor from the apo (Ca2+ free) to the holo (Ca2+-saturated) state. Caldendrin (CDD) is a neuronal Ca2+-binding protein with two functional (EF3 and EF4) and two atypical (EF1 and EF2), non-Ca2+-binding EF-hand motifs. During the transition from the apo to the holo state, guided by the stepwise filling of Ca2+, the protein passes through distinct states and acquires a stable conformational state when only EF3 is occupied by Ca2+. This state is characterized by a Ca2+-derived structural gain in EF3 with destabilization of the EF4 motif. At higher Ca2+ levels, when Ca2+ fills in EF4, the motif regains stability. EF3 controls initial Ca2+ binding and dictates structural destabilization of EF4. It is likely that this unexpected intermotif communication will have an impact on Ca2+-dependent target interactions.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Calorimetría , Dicroismo Circular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Estabilidad Proteica , Desplegamiento Proteico , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Volumetría
18.
Hippocampus ; 27(9): 1016-1029, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28599071

RESUMEN

Post-traumatic stress disorder (PTSD) is characterized by memory disturbances following trauma. Acute predator threat has emerged as an ethological model of PTSD, yet the effects of predator odor on signaling cascades associated with long-term memory remain poorly understood. In this study, we exposed male and female Wistar rats to the synthetic predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) to assess behavioral and physiological responses as well as rapid modulation of signal transduction cascades associated with learning and memory in the male and female hippocampus. During exposure to TMT in the homecage, both male and female animals displayed robust immobility, avoidance, and altered activity as a function of time. Physiologically, TMT exposure increased circulating corticosterone and blood glucose in both male and female rodents, suggesting that TMT evokes sex-independent behavioral and physiological responses. With respect to signal transduction, TMT exposure rapidly reduced phosphorylation of cyclic-adenosine monophosphate response element binding protein (CREB) in the male, but not the female hippocampus. Furthermore, TMT exposure reduced phosphorylation of extracellular signal-regulated kinase 1/2 and increased nuclear expression of the synapto-nuclear messenger protein Jacob in the male hippocampus, consistent with activation of the CREB shut-off pathway. In a follow-up behavioral experiment, post-training exposure to TMT did not affect spatial water maze performance of male rats. However, male rats re-introduced to the context in which TMT had previously been presented displayed avoidance and hyperactivity, but not freezing behavior or elevated corticosterone responses, suggesting that TMT exposure supports a form of contextual conditioning which is not characterized by immobility. Taken together, our findings suggest that TMT evokes similar behavioral and physiological responses in male and female Wistar rats, but affects distinct signaling cascades in the male and female hippocampus which may contribute to behavioral disruptions associated with predator exposure.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Miedo/psicología , Hipocampo/metabolismo , Odorantes , Trastornos por Estrés Postraumático/metabolismo , Animales , Glucemia/efectos de los fármacos , Corticosterona/sangre , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Pérdida de Tono Postural/efectos de los fármacos , Pérdida de Tono Postural/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Fosforilación/fisiología , Ratas , Ratas Wistar , Factores Sexuales , Trastornos por Estrés Postraumático/inducido químicamente , Tiazoles/administración & dosificación
19.
Anal Biochem ; 502: 50-52, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26973219

RESUMEN

There is still an unmet need for simple methods to verify, visualize, and confirm protein-protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca(2+) sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.


Asunto(s)
Proteínas de Unión al Calcio/química , Motivos EF Hand , Aparato de Golgi/metabolismo , Plásmidos/genética , Mapeo de Interacción de Proteínas/métodos , Animales , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Fluorescencia , Humanos , Unión Proteica , Dominios Proteicos
20.
EMBO J ; 30(3): 569-81, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21217644

RESUMEN

Neuronal morphology and number of synapses is not static, but can change in response to a variety of factors, a process called synaptic plasticity. These structural and molecular changes are believed to represent the basis for learning and memory, thereby underling both the developmental and activity-dependent remodelling of excitatory synapses. Here, we report that Zn(2+) ions, which are highly enriched within the postsynaptic density (PSD), are able to influence the recruitment of ProSAP/Shank proteins to PSDs in a family member-specific manner during the course of synaptogenesis and synapse maturation. Through selectively overexpressing each family member at excitatory postsynapses and comparing this to shRNA-mediated knockdown, we could demonstrate that only the overexpression of zinc-sensitive ProSAP1/Shank2 or ProSAP2/Shank3 leads to increased synapse density, although all of them cause a decrease upon knockdown. Furthermore, depletion of synaptic Zn(2+) along with the knockdown of zinc-insensitive Shank1 causes the rapid disintegration of PSDs and the loss of several postsynaptic molecules including Homer1, PSD-95 and NMDA receptors. These findings lead to the model that the concerted action of ProSAP/Shank and Zn(2+) is essential for the structural integrity of PSDs and moreover that it is an important element of synapse formation, maturation and structural plasticity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Densidad Postsináptica/metabolismo , Sinapsis/fisiología , Zinc/metabolismo , Animales , Western Blotting , Quelantes , Cromatografía en Gel , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Modelos Biológicos , Oligonucleótidos/genética , Quinolonas , Interferencia de ARN , Ratas , Compuestos de Tosilo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA