Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533459

RESUMEN

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Asunto(s)
COVID-19 , Pandemias , Adulto , Anciano , Femenino , Hospitalización , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2
3.
IEEE J Biomed Health Inform ; 26(2): 572-580, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34288883

RESUMEN

This paper proposes a novel deep learning architecture involving combinations of Convolutional Neural Networks (CNN) layers and Recurrent neural networks (RNN) layers that can be used to perform segmentation and classification of 5 cardiac rhythms based on ECG recordings. The algorithm is developed in a sequence to sequence setting where the input is a sequence of five second ECG signal sliding windows and the output is a sequence of cardiac rhythm labels. The novel architecture processes as input both the spectrograms of the ECG signal as well as the heartbeats' signal waveform. Additionally, we are able to train the model in the presence of label noise. The model's performance and generalizability is verified on an external database different from the one we used to train. Experimental result shows this approach can achieve an average F1 scores of 0.89 (averaged across 5 classes). The proposed model also achieves comparable classification performance to existing state-of-the-art approach with considerably less number of training parameters.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Algoritmos , Arritmias Cardíacas/diagnóstico por imagen , Frecuencia Cardíaca , Humanos , Redes Neurales de la Computación
4.
JMIR Public Health Surveill ; 7(9): e29310, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34298500

RESUMEN

BACKGROUND: As the world faced the pandemic caused by the novel coronavirus disease 2019 (COVID-19), medical professionals, technologists, community leaders, and policy makers sought to understand how best to leverage data for public health surveillance and community education. With this complex public health problem, North Carolinians relied on data from state, federal, and global health organizations to increase their understanding of the pandemic and guide decision-making. OBJECTIVE: We aimed to describe the role that stakeholders involved in COVID-19-related data played in managing the pandemic in North Carolina. The study investigated the processes used by organizations throughout the state in using, collecting, and reporting COVID-19 data. METHODS: We used an exploratory qualitative study design to investigate North Carolina's COVID-19 data collection efforts. To better understand these processes, key informant interviews were conducted with employees from organizations that collected COVID-19 data across the state. We developed an interview guide, and open-ended semistructured interviews were conducted during the period from June through November 2020. Interviews lasted between 30 and 45 minutes and were conducted by data scientists by videoconference. Data were subsequently analyzed using qualitative data analysis software. RESULTS: Results indicated that electronic health records were primary sources of COVID-19 data. Often, data were also used to create dashboards to inform the public or other health professionals, to aid in decision-making, or for reporting purposes. Cross-sector collaboration was cited as a major success. Consistency among metrics and data definitions, data collection processes, and contact tracing were cited as challenges. CONCLUSIONS: Findings suggest that, during future outbreaks, organizations across regions could benefit from data centralization and data governance. Data should be publicly accessible and in a user-friendly format. Additionally, established cross-sector collaboration networks are demonstrably beneficial for public health professionals across the state as these established relationships facilitate a rapid response to evolving public health challenges.


Asunto(s)
COVID-19/epidemiología , Análisis de Datos , Recolección de Datos , Pandemias/prevención & control , Participación de los Interesados/psicología , Femenino , Educación en Salud , Humanos , Masculino , North Carolina/epidemiología , Vigilancia en Salud Pública , Investigación Cualitativa
5.
J Comput Sci ; 3(5): 269-279, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22962572

RESUMEN

Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist's disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach.

6.
Artículo en Inglés | MEDLINE | ID: mdl-19964719

RESUMEN

Follicular lymphoma (FL) is the second most common non-Hodgkins lymphoma in the United States. While the current diagnosis depends heavily on the review of H&E-stained tissues, additional sources of information such as IHC are occasionally needed. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can be used to generate protein profiles from localized tissue regions, thus making it possible to relate changes in tissue histology to the changes in the protein signature of the tissue. It may be possible to determine potential biomarkers that can indicate disease state and prognosis based on the protein profile. This research aims to combine two different but related types of data in order to develop a unique diagnosis methodology that can potentially improve the accuracy of diagnosis. Preliminary analysis has shown promising results for distinguishing intrafollicle regions from the mantle and follicle zones in normal tissue.


Asunto(s)
Linfoma Folicular/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ingeniería Biomédica , Humanos , Interpretación de Imagen Asistida por Computador , Linfoma Folicular/metabolismo , Linfoma Folicular/patología , Análisis por Matrices de Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/estadística & datos numéricos , Coloración y Etiquetado
7.
J Acoust Soc Am ; 115(4): 1653-64, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15101644

RESUMEN

Spectral integration refers to the summation of activity beyond the bandwidth of the peripheral auditory filter. Several experimental lines have sought to determine the bandwidth of this "supracritical" band phenomenon. This paper reports on two experiments which tested the limit on spectral integration in the same listeners. Experiment I verified the critical separation of 3.5 bark in two-formant synthetic vowels as advocated by the center-of-gravity (COG) hypothesis. According to the COG effect, two formants are integrated into a single perceived peak if their separation does not exceed approximately 3.5 bark. With several modifications to the methods of a classic COG matching task, the present listeners responded to changes in pitch in two-formant synthetic vowels, not estimating their phonetic quality. By changing the amplitude ratio of the formants, the frequency of the perceived peak was closer to that of the stronger formant. This COG effect disappeared with larger formant separation. In a second experiment, auditory spectral resolution bandwidths were measured for the same listeners using common-envelope, two-tone complex signals. Results showed that the limits of spectral averaging in two-formant vowels and two-tone spectral resolution bandwidth were related for two of the three listeners. The third failed to perform the discrimination task. For the two subjects who completed both tasks, the results suggest that the critical region in vowel task and the complex-tone discriminability estimates are linked to a common mechanism, i.e., to an auditory spectral resolving power. A signal-processing model is proposed to predict the COG effect in two-formant synthetic vowels. The model introduces two modifications to Hermansky's [J. Acoust. Soc. Am. 87, 1738-1752 (1990)] perceptual linear predictive (PLP) model. The model predictions are generally compatible with the present experimental results and with the predictions of several earlier models accounting for the COG effect.


Asunto(s)
Fonética , Discriminación de la Altura Tonal/fisiología , Estimulación Acústica , Adulto , Simulación por Computador , Femenino , Humanos , Modelos Lineales , Masculino , Modelos Biológicos , Psicoacústica , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA