Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 550(7674): 101-104, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28980627

RESUMEN

Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coastal zone. For example, increases in melting of the Greenland Ice Sheet and reductions in sea ice and permafrost distribution are likely to alter coastal morphodynamics. The deltas of Greenland are largely unaffected by human activity, but increased freshwater runoff and sediment fluxes may increase the size of the deltas, whereas increased wave activity in ice-free periods could reduce their size, with the net impact being unclear until now. Here we show that southwestern Greenland deltas were largely stable from the 1940s to 1980s, but prograded (that is, sediment deposition extended the delta into the sea) in a warming Arctic from the 1980s to 2010s. Our results are based on the areal changes of 121 deltas since the 1940s, assessed using newly discovered aerial photographs and remotely sensed imagery. We find that delta progradation was driven by high freshwater runoff from the Greenland Ice Sheet coinciding with periods of open water. Progradation was controlled by the local initial environmental conditions (that is, accumulated air temperatures above 0 °C per year, freshwater runoff and sea ice in the 1980s) rather than by local changes in these conditions from the 1980s to 2010s at each delta. This is in contrast to a dominantly eroding trend of Arctic sedimentary coasts along the coastal plains of Alaska, Siberia and western Canada, and to the spatially variable patterns of erosion and accretion along the large deltas of the main rivers in the Arctic. Our results improve the understanding of Arctic coastal evolution in a changing climate, and reveal the impacts on coastal areas of increasing ice mass loss and the associated freshwater runoff and lengthening of open-water periods.

2.
Nat Protoc ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075310

RESUMEN

This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community.

3.
Sci Rep ; 11(1): 22221, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782692

RESUMEN

Traditionally, topographic surveying in earth sciences requires high financial investments, elaborate logistics, complicated training of staff and extensive data processing. Recently, off-the-shelf drones with optical sensors already reduced the costs for obtaining a high-resolution dataset of an Earth surface considerably. Nevertheless, costs and complexity associated with topographic surveying are still high. In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with novel build-in LiDAR sensors. Here we investigate the basic technical capabilities of the LiDAR sensors and we test the application at a coastal cliff in Denmark. The results are compared to state-of-the-art Structure from Motion Multi-View Stereo (SfM MVS) point clouds. The LiDAR sensors create accurate high-resolution models of small objects with a side length > 10 cm with an absolute accuracy of ± 1 cm. 3D models with the dimensions of up to 130 × 15 × 10 m of a coastal cliff with an absolute accuracy of ± 10 cm are compiled. Overall, the versatility in handling outweighs the range limitations, making the Apple LiDAR devices cost-effective alternatives to established techniques in remote sensing with possible fields of application for a wide range of geo-scientific areas and teaching.

4.
Sci Rep ; 7: 46460, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422184

RESUMEN

Identification of sea-level proxies is important for reconstruction of past sea-level variation. Methods for reconstructing Holocene relative sea-level curves are crucial for quantification of the impact of Greenland ice thickness variation on global sea level and vertical land movement. Arctic beach ridges constitute important potential archives of sea-level variation. However, their surface morphology may have undergone modification since deposition due to freezing/thawing processes and erosion, and their morphology may therefore not be trustworthy for sea-level reconstruction. Therefore, geophysical imaging is used to examine the internal structures of the beach ridges and to define a sea-level proxy unaffected by surface processes. The GPR reflections from study sites in West and South Greenland show deposition of beachface deposits and upper shoreface deposits; the contact between steeply dipping beachface reflections and less-dipping shoreface reflections is used as sea-level proxy. Numerous points are identified along GPR transects facilitating reconstruction of relative sea-level variation of hitherto unprecedented resolution. Erosional events and deformation caused by freezing/thawing processes are clearly delineated. The approach constitutes a solid base for reconstruction of relative sea-level curves affected by a well-defined vertical land movement history since the studied beach ridge systems represent long time intervals and only relatively small spatial extents.

5.
Ambio ; 46(Suppl 1): 132-145, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28116682

RESUMEN

A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.


Asunto(s)
Cambio Climático , Seguimiento de Parámetros Ecológicos , Conceptos Meteorológicos , Regiones Árticas , Agua Dulce , Geografía , Sedimentos Geológicos , Groenlandia , Cubierta de Hielo , Estaciones del Año , Movimientos del Agua
6.
Sci Total Environ ; 580: 582-592, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986312

RESUMEN

Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies <±10%, using 7year averages. The specific annual method-agreements were <±10% for all years and the specific annual accuracies <±20% for 6years out of 7. The rating curves were less sensitive to day-to-day variations in the measured suspended sediment concentrations. The discharge weighted mean was not recommended in the high-Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA