Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Sci (China) ; 39: 218-227, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26899660

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure in humans is associated with marked immune suppressions and increased incidence of lymphoblastic diseases. To elucidate mechanisms of impairments in humoral immune responses, we used a murine model. Following a 20-week administration of low doses of TCDD, we observed severely reduced antibody titers, dramatically decreased number of splenic Th1 and Th2 cells and an increase in CD19(+) B cells. Transcriptional profiling of CD19(+) B cells showed that markers of pre-B cells were significantly elevated, indicating delayed B cell maturation. These changes in B cells were accompanied by decreases of T helper cell numbers and reduced IgM and IgG titers. A transcriptome analysis of splenic B cells followed by Ingenuity Pathway Analysis (IPA) revealed a set of differentially expressed genes known to play roles in tumorigenesis, cell-proliferation and cell-migration. The most up-regulated transcript gene was Eph receptor A2 (EphA2), a known oncogene, and the most down-regulated transcript was ZBTB16 that codes for a negative transcriptional regulator important in epigenetic chromatin remodeling. IPA identified cAMP-responsive element modulator (CREM) and cAMP-responsive element binding protein 1 (CREB1) as top upstream regulators. Consistently, a MAPPER promoter database analysis showed that all top dysregulated genes had CREM and/or CREB1 binding sites in their promoter regions. In summary, our data showed that chronic TCDD exposure in mice caused suppressed humoral immunity accompanied with profound dysregulation of gene expression in splenic B-lymphocytes, likely through cAMP-dependent pathways. This dysregulation resulted in impairments in T-cell and B-cell differentiation and activation of the tumorigenic transcription program.


Asunto(s)
Linfocitos B/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Bazo/inmunología , Células TH1/efectos de los fármacos , Células Th2/efectos de los fármacos , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Peso Corporal/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/genética , Inmunoglobulinas/metabolismo , Interleucina-6/metabolismo , Interleucinas/metabolismo , Linfoma no Hodgkin/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células TH1/citología , Células TH1/metabolismo , Células Th2/citología , Células Th2/metabolismo , Interleucina-22
2.
Nat Chem Biol ; 8(7): 655-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22683611

RESUMEN

The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.


Asunto(s)
Biopolímeros/metabolismo , Caspasa 6/metabolismo , Precursores Enzimáticos/metabolismo , Péptidos/metabolismo , Regulación Alostérica , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , Péptidos/química , Unión Proteica
3.
Plants (Basel) ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931061

RESUMEN

The development of new drugs derived from plant sources is of significant interest in modern pharmacy. One of the promising plant sources for introduction into pharmaceuticals is Tripleurospermum inodorum (L.) Sch. Bip., also known as Tripleurospermum perforatum (Merat.) M. This plant has been shown to possess various biological activities, including anti-inflammatory, antimicrobial, and antimycotic activities, among others. However, a review of the current literature reveals a paucity of studies investigating the chemical composition of the herb Tripleurospermum inodorum (L.) Sch. Bip. This study presents the development of a method for obtaining an extract of the herb Tripleurospermum inodorum (L.) Sch. Bip. enriched with flavonoids, harvested before flowering and butonization. This study focused on determining the optimal conditions for extraction, including the concentration of the extractant (ethanol), extraction time, raw material/extractant ratio, extraction frequency, complexation reaction time, amount of aluminum chloride solution, and amount of diluted acetic acid. The results indicate that herbs harvested during this specific period exhibited a higher flavonoid content compared to those collected during butonization and flowering. Moreover, this study demonstrated that the flavonoid content could exceed 7% mg REq/100 g D.W. through a one-hour extraction process. Furthermore, the flavonoid content was found to be 7.65 ± 0.03 mg REq/100 g D.W. following a three-minute ultrasound-assisted extraction process, followed by thermal extraction. A qualitative analysis identified a variety of phenolic compounds in the extract, such as chlorogenic acid, 5-O-p-coumaroylquinic acid, 1-O-p-coumaroylquinic acid, luteolin-7-glucoside, quercetin-3-glucoside, luteolin-7-rutinoside, 3,5-O-dicaffeoylquinic acid, quercetin-3-O-malonylglucoside, apigenin-7-glucoside, luteolin-3-malonylglucoside, cynarin, rhamnetin-3-(O-dimethyl rhamnosyl glucosylglucoside), and luteolin. Moreover, this study demonstrated the antimicrobial, anti-inflammatory, anticoagulant, anti-aggregation, and antioxidant activities of the aqueous alcoholic extract from T. inodorum herb (ETIH) against pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans. Additionally, the extract exhibited comparable anti-inflammatory effects on diclofenac sodium. These findings contribute to the understanding of the potential pharmacological applications of the developed herb extract.

4.
Membranes (Basel) ; 13(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37103866

RESUMEN

Inverted perovskite solar cells with a p-i-n configuration have attracted considerable attention from the research community because of their simple design, insignificant hysteresis, improved operational stability, and low-temperature fabrication technology. However, this type of device is still lagging behind the classical n-i-p perovskite solar cells in terms of its power conversion efficiency. The performance of p-i-n perovskite solar cells can be increased using appropriate charge transport and buffer interlayers inserted between the main electron transport layer and top metal electrode. In this study, we addressed this challenge by designing a series of tin and germanium coordination complexes with redox-active ligands as promising interlayers for perovskite solar cells. The obtained compounds were characterized by X-ray single-crystal diffraction and/or NMR spectroscopy, and their optical and electrochemical properties were thoroughly studied. The efficiency of perovskite solar cells was improved from a reference value of 16.4% to 18.0-18.6%, using optimized interlayers of the tin complexes with salicylimine (1) or 2,3-dihydroxynaphthalene (2) ligands, and the germanium complex with the 2,3-dihydroxyphenazine ligand (4). The IR s-SNOM mapping revealed that the best-performing interlayers form uniform and pinhole-free coatings atop the PC61BM electron-transport layer, which improves the charge extraction to the top metal electrode. The obtained results feature the potential of using tin and germanium complexes as prospective materials for improving the performance of perovskite solar cells.

5.
J Am Chem Soc ; 134(25): 10493-501, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22632068

RESUMEN

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane-1-d, Me(3)SiD, in the gas phase. The reaction was studied at total pressures up to 100 Torr (with and without added SF(6)) over the temperature range of 295-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log[(k/(cm(3) molecule(-1) s(-1))] = (-13.22 ± 0.15) + [(13.20 ± 1.00) kJ mol(-1)]/(RT ln 10). When compared with previously published kinetic data for the reaction of ClSiH with Me(3)SiH, kinetic isotope effects, k(D)/k(H), in the range from 7.4 (297 K) to 6.4 (407 K) were obtained. These far exceed values of 0.4-0.5 estimated for a single-step insertion process. Quantum chemical calculations (G3MP2B3 level) confirm not only the involvement of an intermediate complex, but also the existence of a low-energy internal isomerization pathway which can scramble the D and H atom labels. By means of Rice-Ramsperger-Kassel-Marcus modeling and a necessary (but small) refinement of the energy surface, we have shown that this mechanism can reproduce closely the experimental isotope effects. These findings provide the first experimental evidence for the isomerization pathway and thereby offer the most concrete evidence to date for the existence of intermediate complexes in the insertion reactions of silylenes.

6.
Proc Natl Acad Sci U S A ; 105(47): 18390-5, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19015525

RESUMEN

The Dax-1 protein is an enigmatic nuclear receptor that lacks an expected DNA binding domain, yet functions as a potent corepressor of nuclear receptors. Here we report the structure of Dax-1 bound to one of its targets, liver receptor homolog 1 (LRH-1). Unexpectedly, Dax-1 binds to LRH-1 using a new module, a repressor helix built from a family conserved sequence motif, PCFXXLP. Mutations in this repressor helix that are linked with human endocrine disorders dissociate the complex and attenuate Dax-1 function. The structure of the Dax-1:LRH-1 complex provides the molecular mechanism for the function of Dax-1 as a potent transcriptional repressor.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/química , Proteínas Represoras/química , Factores de Transcripción/metabolismo , Receptor Nuclear Huérfano DAX-1 , Dimerización , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/metabolismo
7.
Front Chem ; 9: 780958, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004610

RESUMEN

Prolyl oligopeptidase (POP) is a large cytosolic serine peptidase that is altered in patients with Alzheimer's disease, Parkinsonian syndrome, muscular dystrophies, and other denervating diseases. Thus, POP may represent a relevant therapeutic target for treatment of neuropsychiatric disorders and neurodegenerative diseases. Here, we report the characterization of five novel cyanopyrrolidine-based compounds (BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, CbzGlnPrdN, and CbzAlaPrdN) and show that they are potent inhibitors of POP and are predicted to penetrate the blood-brain barrier (BBB). Indeed, we show that CbzMetPrdN penetrates the rat BBB and effectively inhibits POP in the brain when administered intraperitoneally. Furthermore, molecular modeling confirmed these compounds likely inhibit POP via interaction with the POP catalytic site. We evaluated protective effects of the cyanopyrrolidine-based POP inhibitors using scopolamine- and maximal electroshock-induced models of amnesia in rats and showed that BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, and CbzGlnPrdN significantly prolonged conditioned passive avoidance reflex (CPAR) retention time when administered intraperitoneally (1 and 2 mg/kg) before evaluation in both models of amnesia, although CbzAlaPrdN was not effective in scopolamine-induced amnesia. Our data support previous reports on the antiamnesic effects of prolinal-based POP inhibitors and indicate an important role of POP in the regulation of learning and memory processes in the CNS.

8.
Sci Rep ; 11(1): 16999, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417540

RESUMEN

The effect of uridine on the myocardial ischemic and reperfusion injury was investigated. A possible mechanism of its cardioprotective action was established. Two rat models were used: (1) acute myocardial ischemia induced by occlusion of the left coronary artery for 60 min; and (2) myocardial ischemia/reperfusion with 30-min ischemia and 120-min reperfusion. In both models, treatment with uridine (30 mg/kg) prevented a decrease in cell energy supply and in the activity of the antioxidant system, as well as an increase in the level of lipid hydroperoxides and diene conjugates. This led to a reduction of the necrosis zone in the myocardium and disturbances in the heart rhythm. The blocker of the mitochondrial ATP-dependent potassium (mitoKATP) channel 5-hydroxydecanoate limited the positive effects of uridine. The data indicate that the cardioprotective action of uridine may be related to the activation of the mitoKATP channel. Intravenously injected uridine was more rapidly eliminated from the blood in hypoxia than in normoxia, and the level of the mitoKATP channel activator UDP in the myocardium after uridine administration increased. The results suggest that the use of uridine can be a potentially effective approach to the management of cardiovascular diseases.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Canales de Potasio/metabolismo , Uridina/farmacología , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Arritmias Cardíacas/sangre , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/sangre , Miocardio/metabolismo , Ratas Wistar , Taquicardia/sangre , Taquicardia/complicaciones , Uridina/sangre , Uridina/uso terapéutico , Uridina Difosfato/metabolismo , Uridina Trifosfato/metabolismo , Fibrilación Ventricular/complicaciones , Fibrilación Ventricular/tratamiento farmacológico
9.
RSC Adv ; 11(35): 21527-21536, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35478811

RESUMEN

The concept of using redox-active ligands, which has become extremely widespread in organometallic chemistry, is often considered from 'their effect on the metal center properties' point of view and 'how to modify the ligands'. In this paper, we present the reverse side of this effective approach - a dramatic change of redox properties of ligands under the influence of a redox-inert metal. Germanium derivatives based on 2,3-dihydroxynaphthalene (1) and N,N'-bidentate ligands, namely 2,2'-bipyridine (2) and 1,10-phenanthroline (3), were obtained and characterized by CV, UV-vis spectroscopy, DFT calculations and in the case of 3 X-ray diffraction. It was shown that the HOMO of the complexes is almost completely located on the naphthalene fragment while the LUMO is on the N,N-ligands. At the same time, there are no boundary molecular orbitals on the germanium atom, but it forms the axial part of the molecule holding two opposite motifs together. Moreover, it sharply affects the level of HOMO and LUMO. Derivatives 2 and 3 are more easily oxidized compared to 2,3-dihydroxynaphthalene by 0.31-0.34 V (7-8 kcal mol-1) and are more easily reduced compared to N,N-donors by 1.08-1.15 V (25-26.5 kcal mol-1). All this together makes it possible to form a system with a narrow HOMO/LUMO gap (∼2 eV). The crystal structure of 3 consists of alternating monomolecular easily oxidizing and easily reducing layers formed due to intermolecular interactions, in particular π-stacking. In addition, in contrast to 1 that starts to decompose noticeably at the temperatures from 200 °C, 2 and 3 have an extremely high thermal stability. They remain stable with no signs of decomposition and melting up to 400 °Ð¡. We believe that this approach to the formation of the supramolecular structure may present prospects for obtaining new functional materials.

10.
Chemphyschem ; 11(2): 419-28, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19998305

RESUMEN

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C(2)H(4), in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF(6)) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.55+/-0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH(2) + C(2)H(4), showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH(2) and SiCl(2) with C(2)H(4).

11.
Mol Endocrinol ; 23(1): 25-34, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18988706

RESUMEN

Despite the fact that many nuclear receptors are ligand dependent, the existence of obligate regulatory ligands is debated for some receptors, including steroidogenic factor 1 (SF-1). Although fortuitously bound bacterial phospholipids were discovered in the structures of the SF-1 ligand-binding domain (LBD), these lipids might serve merely as structural ligands. Thus, we examined whether exogenously added phospholipids would exchange for these bacterial lipids and bind to SF-1. Here, we report the first crystal structure of the SF-1 LBD bound by the exchanged phosphatidylcholine. Although the bound phosphatidylcholine phospholipid mimics the conformation of bound bacterial phosphoplipids, two surface loops, L2-3 and L11-12, surrounding the entrance to the pocket vary significantly between different SF-1 LBD structures. Based on this observation, we hypothesized that a bound ligand might control the conformations of loops L2-3 and L11-12, and that conserved residues in these dynamic loops could influence ligand binding and the receptor function. Consistent with this hypothesis, impaired phospholipid exchange and diminished transcriptional activity were observed for loop L11-12 SF-1 mutants and for the loop L2-3 human mutant R255L. The endocrine disease associated with this L2-3 mutation coupled with our cellular and biochemical data suggest that critical residues at the mouth of the ligand-binding pocket have evolved for efficient binding of phospholipid ligands and for achieving optimal SF-1 activity.


Asunto(s)
Fosfolípidos/metabolismo , Factor Esteroidogénico 1/química , Factor Esteroidogénico 1/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Cartilla de ADN/genética , Evolución Molecular , Humanos , Técnicas In Vitro , Lecitinas/química , Lecitinas/metabolismo , Ligandos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfolípidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factor Esteroidogénico 1/genética
12.
J Am Chem Soc ; 131(26): 9172-3, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19530671

RESUMEN

A total synthesis of the complex, bent aromatic ring-containing marine alkaloid haouamine A is achieved through a route in which every step (with the exception of the final deprotection) is performed on a gram-scale. This is accomplished through the development of a method for the dehydrogenation of cyclohexenones that allows for point-to-planar chirality transfer. This strategy makes it possible to program the desired atropisomeric outcome from a simple chiral cyclohexenone. By synthesizing atrop-haouamine A, this work has firmly established that natural haouamine exists as a single, nonequilibrating atropisomer. Finally, biological investigations demonstrate that the bent aromatic ring of this natural product is critical for anticancer activity against PC3 cells.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Estereoisomerismo
13.
J Phys Chem A ; 113(19): 5512-8, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19382797

RESUMEN

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane, Me(3)SiH, in the gas phase. The reaction was studied at total pressures up to 100 torr (with and without added SF(6)) over the temperature range 297-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.97 +/- 0.25) + (12.57 +/- 1.64) kJ mol(-1)/RT ln 10. The Arrhenius parameters are consistent with a mechanism involving an intermediate complex, whose rearrangement is the rate-determining step. Quantum chemical calculations of the potential energy surface for this reaction and also the reactions of ClSiH with SiH(4) and the other methylsilanes support this conclusion. Comparisons of both experiment and theory with the analogous Si-H insertion processes of SiH(2) and SiMe(2) show that the main factor causing the lower reactivity of ClSiH is the secondary energy barrier. The calculations also show the existence of a novel intramolecular H-atom exchange process in the complex of ClSiH with MeSiH(3).

14.
J Phys Chem A ; 112(5): 849-57, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18193853

RESUMEN

Time-resolved studies of silylene, SiH2, and dimethylsilylene, SiMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to obtain rate constants for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas phase. SiMe2 + Me2GeH2 was studied at five temperatures in the range 299-555 K. Problems of substrate UV absorption at 193 nm at temperatures above 400 K meant that only three temperatures could be used reliably for rate constant measurement. These rate constants gave the Arrhenius parameters log(A/cm3 molecule(-1) s(-1)) = -13.25 +/- 0.16 and E(a) = -(5.01 +/- 1.01) kJ mol(-1). Only room temperature studies of SiH2 were carried out. These gave values of (4.05 +/- 0.06) x 10(-10) cm3 molecule(-1) s(-1) (SiH2 + Me2GeH2 at 295 K) and also (4.41 +/- 0.07) x 10(-10) cm3 molecule(-1) s(-1) (SiH2 + MeGeH3 at 296 K). Rate constant comparisons show the surprising result that SiMe2 reacts 12.5 times slower with Me2GeH2 than with Me2SiH2. Quantum chemical calculations (G2(MP2,SVP)//B3LYP level) of the model Si-H and Ge-H insertion processes of SiMe2 with SiH4/MeSiH3 and GeH4/MeGeH3 support these findings and show that the lower reactivity of SiMe2 with Ge-H bonds is caused by a higher secondary barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper. Other, related, comparisons of silylene reactivity are also presented.

15.
Oncotarget ; 9(52): 29892-29905, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-30042821

RESUMEN

Oct-1(POU2F1) is a DNA-binding transcription regulator and its level being highly increased in many human cancers. Oct-1 is present in the human cells as a family of functionally different isoforms which are transcribed from alternative promoters. Here, we have demonstrated that expression patterns of Oct-1 isoforms change during differentiation of hematopoetic progenitor cells (CD34+) (HPCs) to the B (CD19+) and T (CD3+) cells. While Oct-1L is expressed at a high level in the CD34+ HPCs, its expression level drops dramatically during the T-cell differentiation, although remains nearly the same in B-cells. We have described the novel human Oct-1R isoform which is conserved in mammals and is B cell-specific. Oct-1R was found in B cells, but not in HPCs. Oct-1R is transcribed from the same promoter as Oct-1L, another lymphocyte-specific isoform. Overexpression of Oct-1R and Oct-1L in the Namalwa cells leads to the repression of many genes involved in B-lymphocyte differentiation and signal transduction. Thus these isoforms may regulate the particular stages of development of normal B cells and maintain their proper differentiation status. However the extremely high level of Oct-1L isoform observed in the B-lymphoblast tumor cell lines indicated that the excess of Oct-L seem likely to considerably decrease the differentiation ability of these cells. Oct-1 may serve as a therapeutic target for many tumors, but it should be noted that in a tumor the content of a certain isoform Oct-1, rather than the total Oct-1 protein, can be increased.

16.
World J Diabetes ; 9(9): 149-156, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30254724

RESUMEN

AIM: To evaluate the effects of glucagon-like peptide-1 analogs (GLP-1a) combined with insulin on myocardial ischemia-reperfusion injury in diabetic rats. METHODS: Type 2 diabetes mellitus (T2DM) was induced in male Wistar rats with streptozotocin (65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows: (1) control rats; (2) insulin (0.1 U/kg) treated rats prior to ischemia; (3) insulin (0.1 U/kg) treated rats at reperfusion; (4) GLP-1a (140 mg/kg) treated rats prior to ischemia; (5) GLP-1a (140 mg/kg) treated rats at reperfusion; and (6) rats treated with GLP-1a (140 mg/kg) prior to ischemia plus insulin (0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively. RESULTS: There was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size (34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1a had no effect on infarct size. However, pre-ischemic administration of GLP-1a reduced infarct size to 12% ± 2.2% (P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1a prior to ischemia and insulin at reperfusion (8% ± 1.6%, P < 0.05 vs the control and GLP-1a alone treated groups). CONCLUSION: GLP-1a pre-administration results in myocardial infarct size reduction in rats with T2DM. These effects are maximal in rats treated with GLP-1a pre-ischemia plus insulin at reperfusion.

17.
Mol Cell Biol ; 22(20): 7193-203, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12242296

RESUMEN

Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor with no known ligand. We showed previously that phosphorylation at serine 203 located N'-terminal to the ligand binding domain (LBD) enhanced cofactor recruitment, analogous to the ligand-mediated recruitment in ligand-dependent receptors. In this study, results of biochemical analyses and an LBD helix assembly assay suggest that the SF-1 LBD adopts an active conformation, with helices 1 and 12 packed against the predicted alpha-helical bundle, in the apparent absence of ligand. Fine mapping of the previously defined proximal activation function in SF-1 showed that the activation function mapped fully to helix 1 of the LBD. Limited proteolyses demonstrate that phosphorylation of S203 in the hinge region mimics the stabilizing effects of ligand on the LBD. Moreover, similar effects were observed in an SF-1/thyroid hormone LBD chimera receptor, illustrating that the S203 phosphorylation effects are transferable to a heterologous ligand-dependent receptor. Our collective data suggest that the hinge together with helix 1 is an individualized specific motif, which is tightly associated with its cognate LBD. For SF-1, we find that this intramolecular association and hence receptor activity are further enhanced by mitogen-activated protein kinase phosphorylation, thus mimicking many of the ligand-induced changes observed for ligand-dependent receptors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Secuencias Hélice-Asa-Hélice , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Transcripción Fushi Tarazu , Proteínas de Homeodominio , Humanos , Ligandos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares , Receptores de Hormona Tiroidea/química , Receptores de Hormona Tiroidea/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Factor Esteroidogénico 1 , Receptores beta de Hormona Tiroidea , Factores de Transcripción/química , Factores de Transcripción/genética
18.
Life Sci ; 80(24-25): 2337-41, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17531271

RESUMEN

Purified C-reactive protein (CRP) diminished effects of acetylcholine (ACh) on the vascular tone and the heart rate of rats in vivo. In vitro CRP inhibited breakdown of ACh by acetylcholinesterase (AChE) while did not interact with AChE itself. CRP appears to bind ACh. CRP did not modify the cardiovascular effects of adenosine, another vasorelaxant. The data suggest that there is a new line of cross-talk between the inflammation and cholinergic regulation with CRP acting on endothelium via the ACh-dependent pathway.


Asunto(s)
Acetilcolina/farmacología , Presión Sanguínea/efectos de los fármacos , Proteína C-Reactiva/farmacología , Acetilcolina/antagonistas & inhibidores , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Adenosina/farmacología , Animales , Interacciones Farmacológicas , Frecuencia Cardíaca/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/farmacología , Ratas , Ratas Wistar , Vasodilatadores/farmacología
19.
Exp Gerontol ; 41(7): 697-703, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16621391

RESUMEN

The activity of mitochondrial ATP-dependent potassium channel (mitoKATP) of rat heart and liver mitochondria was shown to decrease during aging. This partially explains the increase of risk of ischemia at a mature age since mitoKATP activation provides cardioprotection. We demonstrated that uridine-5'-diphosphate (UDP) possesses the property to activate mitoKATP. At a concentration of 30 microM, it reactivated mitoKATP in mitochondria, and 5-hydroxydecanoate (5-HD) eliminated this effect. In experimental animals, UDP precursors uridine and uridine-5'-monophosphate (UMP) (both 30 mg/kg, administered intravenously 5 min before coronary occlusion) decreased the myocardium ischemic alteration index (1.9 and 3.5 times, respectively) and the T-wave amplitude within 60 min after occlusion. Both effects were inhibited by Glibenclamide (Glib) and 5-HD. UMP and uridine decreased the number of premature ventricular beats 5.6 and 1.9 times and the duration of ventricular tachycardia 9.4 and 4.1 times, respectively. Glib and 5-HD inhibited the anti-arrhythmic parameters, 5-HD being less effective. Uridine and UMP decreased the duration of fibrillation 10.8 and 3.6 times, respectively, and this effect was not abolished by Glib and 5-HD. Thus, uridine and UMP, which are the precursors of UDP in the cell, possess cardioprotective properties. MitoKATP prevents mainly ischemic injuries and partially rhythm disorders.


Asunto(s)
Corazón/efectos de los fármacos , Canales de Potasio/fisiología , Uridina Monofosfato/farmacología , Uridina/farmacología , Animales , Antiarrítmicos/farmacología , Electrocardiografía/efectos de los fármacos , Masculino , Isquemia Miocárdica/tratamiento farmacológico , Ratas , Ratas Wistar , Uridina Difosfato/farmacología
20.
PLoS One ; 8(5): e63286, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691010

RESUMEN

The screening of large numbers of compounds or siRNAs is a mainstay of both academic and pharmaceutical research. Most screens test those interventions against a single biochemical or cellular output whereas recording multiple complementary outputs may be more biologically relevant. High throughput, multi-channel fluorescence microscopy permits multiple outputs to be quantified in specific cellular subcompartments. However, the number of distinct fluorescent outputs available remains limited. Here, we describe a cellular bar-code technology in which multiple cell-based assays are combined in one well after which each assay is distinguished by fluorescence microscopy. The technology uses the unique fluorescent properties of assay-specific markers comprised of distinct combinations of different 'red' fluorescent proteins sandwiched around a nuclear localization signal. The bar-code markers are excited by a common wavelength of light but distinguished ratiometrically by their differing relative fluorescence in two emission channels. Targeting the bar-code to cell nuclei enables individual cells expressing distinguishable markers to be readily separated by standard image analysis programs. We validated the method by showing that the unique responses of different cell-based assays to specific drugs are retained when three assays are co-plated and separated by the bar-code. Based upon those studies, we discuss a roadmap in which even more assays may be combined in a well. The ability to analyze multiple assays simultaneously will enable screens that better identify, characterize and distinguish hits according to multiple biologically or clinically relevant criteria. These capabilities also enable the re-creation of complex mixtures of cell types that is emerging as a central area of interest in many fields.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Células HeLa , Humanos , Proteínas Luminiscentes/química , Datos de Secuencia Molecular , Señales de Localización Nuclear
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA