Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104891, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286038

RESUMEN

Fibrils of the microtubule-associated protein tau are intimately linked to the pathology of Alzheimer's disease (AD) and related neurodegenerative disorders. A current paradigm for pathology spreading in the human brain is that short tau fibrils transfer between neurons and then recruit naive tau monomers onto their tips, perpetuating the fibrillar conformation with high fidelity and speed. Although it is known that the propagation could be modulated in a cell-specific manner and thereby contribute to phenotypic diversity, there is still limited understanding of how select molecules are involved in this process. MAP2 is a neuronal protein that shares significant sequence homology with the repeat-bearing amyloid core region of tau. There is discrepancy about MAP2's involvement in pathology and its relationship with tau fibrillization. Here, we employed the entire repeat regions of 3R and 4R MAP2, to investigate their modulatory role in tau fibrillization. We find that both proteins block the spontaneous and seeded aggregation of 4R tau, with 4R MAP2 being slightly more potent. The inhibition of tau seeding is observed in vitro, in HEK293 cells, and in AD brain extracts, underscoring its broader scope. MAP2 monomers specifically bind to the end of tau fibrils, preventing recruitment of further tau and MAP2 monomers onto the fibril tip. The findings uncover a new function for MAP2 as a tau fibril cap that could play a significant role in modulating tau propagation in disease and may hold promise as a potential intrinsic protein inhibitor.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Asociadas a Microtúbulos , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Citoesqueleto/metabolismo , Células HEK293 , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
J Biol Chem ; 297(3): 101021, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339733

RESUMEN

Oxidative stress has been implicated in the pathogenesis and progression of several tauopathies, including Alzheimer's disease. The deposition of fibrillar inclusions made of tau protein is one of the pathological hallmarks of these disorders. Although it is becoming increasingly evident that the specific fibril structure may vary from one tauopathy to another and it is recognized that different types of isoforms (three-repeat and four-repeat tau) can be selectively deposited, little is known about the role oxidation may play in aggregation. Four-repeat tau contains two cysteines that can form an intramolecular disulfide bond, resulting in a structurally restrained compact monomer. There is discrepancy as to whether this monomer can aggregate or not. Using isolated four-repeat tau monomers (htau40) with intramolecular disulfide bonds, we demonstrate that these proteins form fibrils. The fibrils are less stable than fibrils formed under reducing conditions but are highly effective in seeding oxidized tau monomers. Conversely, a strong seeding barrier prevents incorporation of reduced tau monomers, tau mimics in which the cysteines have been replaced by alanines or serines, and three-repeat tau (htau23), a single-cysteine isoform. The barrier also holds true when seed and monomer types are reversed, indicating that oxidized and reduced tau are incompatible with each other. Surprisingly, fibrils composed of compact tau disaggregate upon reduction, highlighting the importance of the intramolecular disulfide bond for fibril stability. The findings uncover a novel binary redox switch that controls the aggregation and disaggregation of these fibrils and extend the conformational spectrum of tau aggregates.


Asunto(s)
Compuestos de Sulfhidrilo/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA