RESUMEN
A series of dithiocarbamate esters of parthenolide (PTL) was designed, synthesised, and evaluated for their anti- acute myelogenous leukaemia (AML) activities. The most promising compound 7l showed greatly improved potency against AML progenitor cell line KG1a with IC50 value of 0.7 µM, and the efficacy was 8.7-folds comparing to that of PTL (IC50 = 6.1 µM). Compound 7l induced apoptosis of total primary human AML cells and leukaemia stem cell (LSCs) of primary AML cells while sparing normal cells. Furthermore, 7l suppressed the colony formation of primary human leukaemia cells. Moreover, compound 12, the salt form of 7l, prolonged the lifespan of mice in two patient-derived xenograft models and had no observable toxicity. The preliminary molecular mechanism study revealed that 7l-mediated apoptosis is associated with mitogen-activated protein kinase signal pathway. On the basis of these investigations, we propose that 12 might be a promising drug candidate for ultimate discovery of anti-LSCs drug.
Asunto(s)
Apoptosis/efectos de los fármacos , Ésteres/síntesis química , Ésteres/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Sesquiterpenos/síntesis química , Tiocarbamatos/síntesis química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Ésteres/química , Xenoinjertos , Humanos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacología , Tiocarbamatos/química , Tiocarbamatos/farmacologíaRESUMEN
Acute myeloid leukemia (AML) is a refractory disease, and the majority of AML patients died from relapse and multidrug resistance. More and more studies demonstrate that AML stem cells play key role in multidrug resistance of AML. Here, we report a derivative of dehydrocostus lactone, that is, dispirocyclopropyldehydrocostus lactone (DDL), showed preferable cytotoxicity against a series of leukemia cell lines and AML stem cells from clinical samples of AML patient. Meanwhile, DDL demonstrated no significant toxicity to normal hematopoietic cells. Therefore, the prodrug of DDL, DMADDL, was evaluated for its in vivo anti-AML activity. The result revealed that DMADDL could inhibit the tumor growth in SCID mice tumorigenicity assay. Further study suggested that DDL induced apoptosis mainly through the up-regulation of apoptosis related protein Bax, followed by the cleavage of caspase-3, caspase-9, and PARP.
Asunto(s)
Lactonas/química , Profármacos/química , Sesquiterpenos/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lactonas/farmacología , Lactonas/uso terapéutico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Profármacos/farmacología , Profármacos/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Trasplante Heterólogo , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Parthenolide (PTL) selectively ablates leukemia stem cells (LSCs). A series of PTL derivatives with modifications on C-14 of PTL was synthesized, and most of the derivatives showed high activities against HL-60 and KG1a. The most potent compound 6j exhibited IC50 values of 0.4 µM and 1.1 µM against KG1a and HL-60, respectively, which were 8.7 and 3.8 folds more potent than those of PTL, respectively. Moreover, compound 6j showed relatively low toxicity to normal cells (IC50 = 12.3 µM) comparing with its high anti-AML activity. The selectivity indexes for AML cells KG1a and HL-60 were 30.8 and 11.2, respectively. Preliminary study revealed that compound 6j could induce apoptosis of KG1a cells.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Leucemia Mieloide Aguda/patología , Sesquiterpenos/síntesis química , Sesquiterpenos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Células HL-60 , Humanos , Sesquiterpenos/química , Relación Estructura-ActividadRESUMEN
Natural depsipeptide vinylamycin was reported to be an antibiotic previously. Herein we report vinylamycin to be active against K562 leukemia cells (IC50 = 4.86 µM) and be unstable in plasma (t1/2 = 0.54 h). A total of 24 vinylamycin analogues with modification of the OH group and chiral centers were generated via a combinatorial approach. The lead compound 1a was subsequently characterized as having the following: no antimicrobial activity, significantly higher plasma stability (t1/2 = 14.3 h), improved activity against K562 leukemia cells (IC50 = 0.64 µM), and up to 75% cell inhibition without significant toxicities in K562 cells xenograft zebrafish model. Furthermore, compound 1a maintained its activity against the breast cancer cell line MCF-7 under hypoxic conditions. In comparison, the activity of gemcitabine in the same hypoxic in vitro model of MCF-7 cells was 15-fold lower. Therefore, the present results demonstrate that 1a has great potential as an anticancer agent.
Asunto(s)
Proteínas Bacterianas/química , Depsipéptidos/química , Animales , Antiinfecciosos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/síntesis química , Proteínas Bacterianas/farmacología , Depsipéptidos/síntesis química , Depsipéptidos/farmacología , Xenoinjertos , Humanos , Células K562 , Pez CebraRESUMEN
Inspired by the biosynthesis of sesquiterpene lactones (SLs), herein we report the asymmetric total synthesis of the germacrane ring (24). The synthetic strategy features a selective aldol reaction between ß,γ-unsaturated chiral sulfonylamide 15a and aldehyde 13, as well as the intramolecular α-alkylation of sulfone 21 to construct a 10-membered carbocylic ring. The key intermediate 24 can be used to prepare the natural products costunolide and parthenolide (PTL), which are the key precursors for transformation into other SLs. Furthermore, the described synthetic sequences are amenable to the total synthesis of SL analogues, such as trifluoromethylated analogues 32 and 45. Analogues 32 and 45 maintained high activities against a series of cancer cell lines compared to their parent PTL and costunolide, respectively. In addition, 32 showed enhanced tolerance to acidic media compared with PTL. To our surprise, PTL and 32 showed comparable half-lives in rat plasma and in the presence of human liver microsomes.