Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Analyst ; 148(20): 5070-5083, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668375

RESUMEN

The study demonstrates that a combination of plasmonic nanostructures and artificial receptors can be applied for sensing small molecular species. Gold nanoshells containing magnetic cores are used as the SERS-active substrates, which opens the way for the development of multimodal contrast agents with applicability extended to sensing or for the separation of analytes by magnetic solid-phase extraction. Disubstituted ureas forming hydrogen-bonded complexes with certain anions can be employed as molecular sensors. In this case study, gold nanoshells with silica-coated Mn-Zn ferrite cores were prepared by a multistep procedure. The nanoshells were co-functionalized with an N-(4-mercaptophenyl)-N'-(4-nitrophenyl)urea sensor synthesized directly on the gold surface, and with 4-nitrothiophenol, which is adopted as an internal standard. SERS measurements were carried out with acetonitrile solutions of tetrabutylammonium fluoride (Bu4NF) over a concentration range of 10-10-10-1 mol L-1. The spectral response of the sensor is dependent on the fluoride concentration in the range of 10-5-10-1 mol L-1. To investigate further the SERS mechanism, a model sensor, N-(4-bromophenyl)-N'-(4-nitrophenyl)urea, was synthesized and used in Raman spectroscopy with solutions of Bu4NF, up to a molar ratio of 1 : 20. The spectra and the interactions between the sensors and fluoride anions were also studied by extensive DFT computations.

2.
Inorg Chem ; 59(2): 1068-1074, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31891258

RESUMEN

The geometrically frustrated diamond spin chain system has yielded materials with a diversity of interesting magnetic properties but is predominantly limited to compounds with single-spin components. Here, we report the compound [(CH3)2NH2]6[FeIII4FeII2(µ3-O)2(µ3-OH)2(µ3-SO4)8] (1), which features the mixed-valent iron(II/III) diamond chain: ∞[FeIII-(FeIII)2-FeIII-(FeII)2]. 57Fe Mössbauer spectroscopy shows that two-thirds of the total spins in the ∞[FeIII4FeII2] diamond chain are spin-5/2 (high-spin FeIII), while the remaining one-third are spin-2 (high-spin FeII). To date, 1 is the only diamond-chain compound composed of more than one type of dimer, namely, (FeIII)2 and (FeII)2. On the basis of temperature-dependent 57Fe Mössbauer spectroscopy data, an alternating noncollinear 90° magnetic structure is proposed. Both the (FeIII)2 and (FeII)2 dimers are antiferromagnetically coupled and align in the direction along the chain axis ≈ [010], whereas the moments of the bridging FeIII monomers are oriented orthogonally. The spin canting, arising from the anisotropy of the FeII ions, leads to ferrimagnetic ordering at low temperatures.

3.
Chem Mater ; 36(14): 7016-7025, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39070668

RESUMEN

We report an in-depth study of the thermodynamic and magnetocaloric properties of a strongly frustrated magnet, Cs2Fe2(MoO4)3. The underlying structure belongs to the double trillium lattice, which consists of two FeII (S = 2) sites with easy-axis and easy-plane single-ion anisotropy. Detailed 57Fe Mössbauer spectroscopic investigations along with ligand-field calculations support the existence of disparate ground states. The antiferromagnetic ordered structure is presented by the propagation vector k = (0,0,0) with noncollinear magnetic moments of 2.97 µB (Fe1) and 0.17 µB (Fe2), respectively. Strong and disordered magnetic correlations exist in the temperature regime between T N ≈ 1.0 K and |θCW| ≈ 22 K. The large degeneracy of the ground state is investigated in terms of its magnetocaloric response. Magnetization and specific heat measurements indicate a significant magnetocaloric cooling efficiency, making this rare-earth-free compound a promising candidate for cryogenic magnetic refrigeration applications, with refrigeration capacity of 79 J kg-1 for Δ(µ0 H) = 8 T.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159772

RESUMEN

Highly complex nanoparticles combining multimodal imaging with the sensing of physical properties in biological systems can considerably enhance biomedical research, but reports demonstrating the performance of a single nanosized probe in several imaging modalities and its sensing potential at the same time are rather scarce. Gold nanoshells with magnetic cores and complex organic functionalization may offer an efficient multimodal platform for magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and fluorescence techniques combined with pH sensing by means of surface-enhanced Raman spectroscopy (SERS). In the present study, the synthesis of gold nanoshells with Mn-Zn ferrite cores is described, and their structure, composition, and fundamental properties are analyzed by powder X-ray diffraction, X-ray fluorescence spectroscopy, transmission electron microscopy, magnetic measurements, and UV-Vis spectroscopy. The gold surface is functionalized with four different model molecules, namely thioglycerol, meso-2,3-dimercaptosuccinate, 11-mercaptoundecanoate, and (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide, to analyze the effect of varying charge and surface chemistry on cells in vitro. After characterization by dynamic and electrophoretic light scattering measurements, it is found that the particles do not exhibit significant cytotoxic effects, irrespective of the surface functionalization. Finally, the gold nanoshells are functionalized with a combination of 4-mercaptobenzoic acid and 7-mercapto-4-methylcoumarin, which introduces a SERS active pH sensor and a covalently attached fluorescent tag at the same time. 1H NMR relaxometry, fluorescence spectroscopy, and PAI demonstrate the multimodal potential of the suggested probe, including extraordinarily high transverse relaxivity, while the SERS study evidences a pH-dependent spectral response.

5.
J Biomed Mater Res A ; 108(7): 1563-1578, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32176405

RESUMEN

Magnetic nanoparticles of ε-Fe1.76 Ga0.24 O3 with the volume-weighted mean size of 17 nm were prepared by thermal treatment of a mesoporous silica template impregnated with metal nitrates and were coated with silica shell of four different thicknesses in the range 6-24 nm. The bare particles exhibited higher magnetization than the undoped compound, 22.4 Am2 kg-1 at 300 K, and were characterized by blocked state with the coercivity of 1.2 T at 300 K, being thus the very opposite of superparamagnetic iron oxides. The relaxometric study of the silica-coated samples at 0.47 T revealed promising properties for MRI, specifically, transverse relaxivity of 89-168 s-1 mmol(f.u.)-1 L depending on the shell thickness was observed. We investigated the effects of the silica-coated nanoparticles on human A549 and MCF-7 cells. Cell viability, proliferation, cell cycle distribution, and the arrangement of actin cytoskeleton were assessed, as well as formation and maturation of focal adhesions. Our study revealed that high concentrations of silica-coated particles with larger shell thicknesses of 16-24 nm interfere with the actin cytoskeletal networks, inducing thus morphological changes. Consequently, the focal adhesion areas were significantly decreased, resulting in impaired cell adhesion.


Asunto(s)
Galio/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Dióxido de Silicio/química , Células A549 , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Galio/farmacología , Humanos , Células MCF-7 , Dióxido de Silicio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA