Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39423823

RESUMEN

Hepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs. p62, binding neighbor of BRCA1 gene 1 (NBR1) and STING, triggers the IFN cascade by displacing NBR1, which normally prevents the interaction of TRIM32 with STING and its subsequent activation. Furthermore, NBR1 also antagonizes STING by promoting its trafficking to the endosome-lysosomal compartment for degradation independent of autophagy. Of functional relevance, NBR1 deletion completely reverts the tumor-promoting function of p62-deficient HSCs by rescuing the inhibited STING-IFN pathway, thus enhancing anti-tumor responses mediated by CD8+ T cells. Therefore, NBR1 emerges as a synthetic vulnerability of p62 deficiency in HSCs by promoting the STING/IFN pathway, which boosts anti-tumor CD8+ T cell responses to restrain HCC progression.

2.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36511816

RESUMEN

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Asunto(s)
Carcinoma de Células Escamosas , Genoma , Humanos , Cromatina/genética , Factores de Transcripción/genética , Epigénesis Genética , Carcinoma de Células Escamosas/genética , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo
3.
Gastroenterology ; 162(4): 1272-1287.e16, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34953915

RESUMEN

BACKGROUND & AIMS: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMN) with an associated invasive carcinoma (IPMNinv) arise from 2 distinct precursors, and their fundamental differences remain obscure. Here, we aimed to assess the difference of chromatin architecture regulating the transcriptional signatures or biological features in pancreatic cancers. METHODS: We established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, IPMNinv, and PDAC. We performed exome sequencing (seq), RNA-seq, assay for transposase-accessible chromatin-seq, chromatin immunoprecipitation-seq, high-throughput chromosome conformation capture, and phenotypic analyses with short hairpin RNA or clustered regularly interspaced short palindromic repeats interference. RESULTS: Established organoids successfully reproduced the histology of primary tumors. IPMN and IPMNinv organoids harbored GNAS, RNF43, or KLF4 mutations and showed the distinct expression profiles compared with PDAC. Chromatin accessibility profiles revealed the gain of stomach-specific open regions in IPMN and the pattern of diverse gastrointestinal tissues in IPMNinv. In contrast, PDAC presented an impressive loss of accessible regions compared with normal pancreatic ducts. Transcription factor footprint analysis and functional assays identified that MNX1 and HNF1B were biologically indispensable for IPMN lineages. The upregulation of MNX1 was specifically marked in the human IPMN lineage tissues. The MNX1-HNF1B axis governed a set of genes, including MYC, SOX9, and OLFM4, which are known to be essential for gastrointestinal stem cells. High-throughput chromosome conformation capture analysis suggested the HNF1B target genes to be 3-dimensionally connected in the genome of IPMNinv. CONCLUSIONS: Our organoid analyses identified the MNX1-HNF1B axis to be biologically significant in IPMN lineages.


Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Factor Nuclear 1-beta del Hepatocito , Proteínas de Homeodominio , Neoplasias Intraductales Pancreáticas , Factores de Transcripción , Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/patología , Cromatina , Factor Nuclear 1-beta del Hepatocito/genética , Proteínas de Homeodominio/genética , Humanos , Neoplasias Intraductales Pancreáticas/genética , Factores de Transcripción/genética , Neoplasias Pancreáticas
4.
Hepatol Res ; 53(11): 1117-1125, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37486025

RESUMEN

AIM: Radiofrequency ablation (RFA) is regarded as a first-line treatment for hepatocellular carcinoma (HCC) at an early stage. When treated with RFA, tumor biopsy may not be performed due to the risk of neoplastic seeding. We previously revealed that the risk of neoplastic seeding is significantly reduced by performing biopsies after RFA. In this study, we investigated the possibility of pathological evaluation and gene mutation analysis of post-RFA tumor specimens. METHODS: Radiofrequency ablation was undertaken on diethylnitrosamine-induced mouse liver tumor, and tumor samples with or without RFA were subjected to whole exome sequencing. Post-RFA human liver tumor specimens were used for detection of TERT promoter mutations and pathological assessment. RESULTS: The average somatic mutation rate, sites of mutation, and small indels and base transition patterns were comparable between the nontreated and post-RFA tumors. We identified 684 sites of nonsynonymous somatic substitutions in the nontreated tumor and 704 sites of nonsynonymous somatic substitutions in the post-RFA tumor, with approximately 85% in common. In the human post-RFA samples, the TERT promoter mutations were successfully detected in 40% of the cases. Pathological evaluation was possible with post-RFA specimens, and in one case, the diagnosis of adenocarcinoma was made. CONCLUSION: Our findings suggest that post-RFA liver tumor biopsy is a useful and safe method for obtaining tumor samples that can be used for gene mutation analysis and for pathological assessment.

5.
Cancer Sci ; 112(7): 2855-2869, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33970549

RESUMEN

Ten-eleven translocation 1 (TET1) is an essential methylcytosine dioxygenase of the DNA demethylation pathway. Despite its dysregulation being known to occur in human cancer, the role of TET1 remains poorly understood. In this study, we report that TET1 promotes cell growth in human liver cancer. The transcriptome analysis of 68 clinical liver samples revealed a subgroup of TET1-upregulated hepatocellular carcinoma (HCC), demonstrating hepatoblast-like gene expression signatures. We performed comprehensive cytosine methylation and hydroxymethylation (5-hmC) profiling and found that 5-hmC was aberrantly deposited preferentially in active enhancers. TET1 knockdown in hepatoma cell lines decreased hmC deposition with cell growth suppression. HMGA2 was highly expressed in a TET1high subgroup of HCC, associated with the hyperhydroxymethylation of its intronic region, marked as histone H3K4-monomethylated, where the H3K27-acetylated active enhancer chromatin state induced interactions with its promoter. Collectively, our findings point to a novel type of epigenetic dysregulation, methylcytosine dioxygenase TET1, which promotes cell proliferation via the ectopic enhancer of its oncogenic targets, HMGA2, in hepatoblast-like HCC.


Asunto(s)
Proteína HMGA2/genética , Neoplasias Hepáticas/genética , Oxigenasas de Función Mixta/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Citosina/metabolismo , Metilación de ADN , Dioxigenasas/metabolismo , Epigénesis Genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Proteína HMGA2/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Oxigenasas de Función Mixta/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regulación hacia Arriba
6.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668122

RESUMEN

Chronic inflammation is thought to promote tumorigenesis and metastasis by several mechanisms, such as affecting tumor cells directly, establishing a tumor-supporting microenvironment, enhancing tumor angiogenesis, and suppressing antitumor immunity. In this review, we discuss the recent advances in our understanding of how inflammation induces the immunosuppressive tumor microenvironment, such as increasing the level of pro-inflammatory cytokines, chemokines, and immunosuppressive molecules, inducing immune checkpoint molecules and cytotoxic T-cell exhaustion, and accumulating regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). The suppression of antitumor immunity by inflammation is especially examined in the liver and colorectal cancer. In addition, chronic inflammation is induced during aging and causes age-related diseases, including cancer, by affecting immunity. Therefore, we also discuss the age-related diseases regulated by inflammation, especially in the liver and colon.


Asunto(s)
Envejecimiento/inmunología , Transformación Celular Neoplásica/inmunología , Neoplasias Gastrointestinales/inmunología , Inmunomodulación , Inflamación/inmunología , Neoplasias Hepáticas/inmunología , Envejecimiento/patología , Animales , Transformación Celular Neoplásica/patología , Neoplasias Gastrointestinales/patología , Humanos , Neoplasias Hepáticas/patología
7.
Gut ; 67(8): 1493-1504, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29437870

RESUMEN

OBJECTIVE: Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. DESIGN: Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. RESULTS: The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid ß-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. CONCLUSION: In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/etiología , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina/análogos & derivados , Neoplasias Hepáticas/etiología , Enfermedad del Hígado Graso no Alcohólico/sangre , Obesidad/complicaciones , Adulto , Anciano , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carnitina/metabolismo , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/metabolismo , Obesidad/patología
8.
Pathol Int ; 68(2): 102-108, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29341375

RESUMEN

Although high-resolution three-dimensional imaging of endoscopically resected gastrointestinal specimens can help elucidating morphological features of gastrointestinal mucosa or tumor, there are no established methods to achieve this without breaking specimens apart. We evaluated the utility of transparency-enhancing technology for three-dimensional assessment of gastrointestinal mucosa in porcine models. Esophagus, stomach, and colon mucosa samples obtained from a sacrificed swine were formalin-fixed and paraffin-embedded, and subsequently deparaffinized for analysis. The samples were fluorescently stained, optically cleared using transparency-enhancing technology: ilLUmination of Cleared organs to IDentify target molecules method (LUCID), and visualized using laser scanning microscopy. After observation, all specimens were paraffin-embedded again and evaluated by conventional histopathological assessment to measure the impact of transparency-enhancing procedures. As a result, microscopic observation revealed horizontal section views of mucosa at deeper levels and enabled the three-dimensional image reconstruction of glandular and vascular structures. Besides, paraffin-embedded specimens after transparency-enhancing procedures were all assessed appropriately by conventional histopathological staining. These results suggest that transparency-enhancing technology may be feasible for clinical application and enable the three-dimensional structural analysis of endoscopic resected specimen non-destructively. Although there remain many limitations or problems to be solved, this promising technology might represent a novel histopathological method for evaluating gastrointestinal cancers.


Asunto(s)
Colon/patología , Esófago/patología , Mucosa Gástrica/patología , Mucosa Intestinal/patología , Estómago/patología , Animales , Biopsia , Tracto Gastrointestinal/metabolismo , Coloración y Etiquetado , Porcinos
9.
J Hepatol ; 63(1): 131-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25724366

RESUMEN

BACKGROUND & AIMS: Obesity defined by body mass index (BMI) significantly increases the risk of hepatocellular carcinoma (HCC). In contrast, not only obesity but also underweight is associated with poor prognosis in patients with HCC. Differences in body composition rather than BMI were suggested to be true determinants of prognosis. However, this hypothesis has not been demonstrated conclusively. METHODS: We measured skeletal muscle index (SMI), mean muscle attenuation (MA), visceral adipose tissue index, subcutaneous adipose tissue index, and visceral to subcutaneous adipose tissue area ratios (VSR) via computed tomography in a large-scale retrospective cohort of 1257 patients with different stages of HCC, and comprehensively analyzed the impact of body composition on the prognoses. RESULTS: Among five body composition components, low SMI (called sarcopenia), low MA (called intramuscular fat [IMF] deposition), and high VSR (called visceral adiposity) were significantly associated with mortality, independently of cancer stage or Child-Pugh class. A multivariate analysis revealed that sarcopenia (hazard ratio [HR], 1.52; 95% confidence interval [CI], 1.18-1.96; p=0.001), IMF deposition (HR, 1.34; 95% CI, 1.05-1.71; p=0.020), and visceral adiposity (HR, 1.35; 95% CI, 1.09-1.66; p=0.005) but not BMI were significant predictors of survival. The prevalence of poor prognostic body composition components was significantly higher in underweight and obese patients than in normal weight patients. CONCLUSIONS: Sarcopenia, IMF deposition, and visceral adiposity independently predict mortality in patients with HCC. Body composition rather than BMI is a major determinant of prognosis in patients with HCC.


Asunto(s)
Adiposidad , Carcinoma Hepatocelular/complicaciones , Grasa Intraabdominal/diagnóstico por imagen , Neoplasias Hepáticas/complicaciones , Músculo Esquelético/diagnóstico por imagen , Sarcopenia/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Índice de Masa Corporal , Carcinoma Hepatocelular/diagnóstico , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Estadificación de Neoplasias , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Sarcopenia/etiología
10.
Carcinogenesis ; 35(11): 2404-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24947179

RESUMEN

Genetic mutations in pancreatic ductal adenocarcinoma (PDAC) with critical roles have been well examined. The recent discovery of alterations in genes encoding histone modifiers suggests their possible roles in the complexity of cancer development. We previously reported loss of heterozygosity of the KDM6B gene, which encodes a histone demethylase for trimethylated histone H3 lysine 27, a repressive chromatin mark, in PDAC cells. In this study, we demonstrated that loss of KDM6B enhanced aggressiveness of PDAC cells. KDM6B has been regarded as a tumor suppressor that mediates oncogenic KRAS-induced senescence. Consistently, KDM6B was highly expressed in pancreatic precancerous lesions (pancreatic intraepithelial neoplasms); then, the expression decreased as the malignant grade progressed. We found that knockdown of KDM6B in PDAC cells promoted tumor sphere formation and increased peritoneal dissemination and liver metastasis in vivo. Microarray and chromatin immunoprecipitation analysis implicated CEBPA for aggressiveness induced by KDM6B knockdown. CEBPA knockdown recapitulated the phenotypic change of PDAC cells after KDM6B knockdown, which was reversed by forced expression of C/EBPα. Moreover, similar protein expression patterns of KDM6B and C/EBPα in human PDAC emphasized their functional correlation. Notably, pharmacological inhibition of the H3K27 methylase EZH2 in PDAC cells inhibited tumor sphere formation along with the upregulation of CEBPA expression, and this effect was impaired in KDM6B knockdown cells, highlighting the role for KDM6B in the activation of CEBPA. Together, our results propose a significant role for the KDM6B-C/EBPα axis in the PDAC phenotype.


Asunto(s)
Adenocarcinoma/genética , Proteínas Potenciadoras de Unión a CCAAT/biosíntesis , Proliferación Celular/genética , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/patología , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Histona Demetilasas/genética , Histonas/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Neoplasias Pancreáticas/patología , Complejo Represivo Polycomb 2/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/genética
11.
Int J Cancer ; 134(9): 2189-98, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24174293

RESUMEN

We previously reported the increased serum mitochondrial creatine kinase (MtCK) activity in patients with hepatocellular carcinoma (HCC), mostly due to the increase in ubiquitous MtCK (uMtCK), and high uMtCK mRNA expression in HCC cell lines. We explored the mechanism(s) and the relevance of high uMtCK expression in HCC. In hepatitis C virus core gene transgenic mice, known to lose mitochondrial integrity in liver and subsequently develop HCC, uMtCK mRNA and protein levels were increased in HCC tissues but not in non-tumorous liver tissues. Transient overexpression of ankyrin repeat and suppressor of cytokine signaling box protein 9 (ASB9) reduced uMtCK protein levels in HCC cells, suggesting that increased uMtCK levels in HCC cells may be caused by increased gene expression and decreased protein degradation due to reduced ASB9 expression. The reduction of uMtCK expression by siRNA led to increased cell death, and reduced proliferation, migration and invasion in HCC cell lines. Then, consecutive 105 HCC patients, who underwent radiofrequency ablation with curative intent, were enrolled to analyze their prognosis. The patients with serum MtCK activity >19.4 U/L prior to the treatment had significantly shorter survival time than those with serum MtCK activity ≤ 19.4 U/L, where higher serum MtCK activity was retained as an independent risk for HCC-related death on multivariate analysis. In conclusion, high uMtCK expression in HCC may be caused by hepatocarcinogenesis per se but not by loss of mitochondrial integrity, of which ASB9 could be a negative regulator, and associated with highly malignant potential to suggest a poor prognosis.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Neoplasias Hepáticas/enzimología , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Femenino , Humanos , Immunoblotting , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Pronóstico , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transfección
12.
Carcinogenesis ; 34(10): 2380-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23698634

RESUMEN

Alterations in genes coding for histone modifiers are found in human cancers, suggesting that histone modification is involved in malignant features of neoplastic cells. This study showed that a histone demethylase KDM4C is significant for colonosphere formation by mediating the cross talk between oncogenic pathways through a feed-forward mechanism. The expression of KDM4C gene was increased in spheres from colorectal cancer (CRC) cells and the knockdown (KD) of KDM4C eliminated colonosphere formation. We found that the KD of ß-catenin, an important oncogenic factor in CRC, resulted in not only decreased sphere formation but also impaired upregulation of KDM4C gene in spheres. ß-Catenin bound to the KDM4C promoter, suggesting that KDM4C is involved in the sphere-forming ability downstream of ß-catenin in CRC cells. Microarray analysis identified the JAG1 gene that codes for a notch ligand Jagged1 responsible for sphere formation as a target of KDM4C. KDM4C KD decreased the expression of JAG1 gene, and the downregulation of JAG1 gene recapitulated the impaired colonosphere formation. JAG1 is also a target of ß-catenin, and chromatin immunoprecipitation analysis showed the binding of ß-catenin and KDM4C onto the JAG1 promoter during colonosphere formation. Importantly, KDM4C KD ruined the recruitment of ß-catenin onto the JAG1 promoter independently of the H3-K9 methylation status and blunted JAG1 expression during sphere formation. These data indicate that KDM4C maintains the sphere-forming capacity in CRCs by mediating the ß-catenin-dependent transcription of JAG1 in a feed-forward manner.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serrate-Jagged , Esferoides Celulares , Carga Tumoral/genética , Células Tumorales Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
13.
Cancer Sci ; 103(4): 670-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22320381

RESUMEN

Dysregulated DNA methylation followed by abnormal gene expression is an epigenetic hallmark in cancer. DNA methylation is catalyzed by DNA methyltransferases, and the aberrant expression or mutations of DNA methyltransferase genes are found in human neoplasm. The enzymes for demethylating 5-methylcytosine were recently identified, and the biological significance of DNA demethylation is a current focus of scientific attention in various research fields. Ten-eleven translocation (TET) proteins have an enzymatic activity for the conversion from 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), which is an intermediate of DNA demethylation. The loss-of-function mutations of TET2 gene were reported in myeloid malignancies, suggesting that impaired TET-mediated DNA demethylation could play a crucial role in tumorigenesis. It is still unknown, however, whether DNA demethylation is involved in biological properties in solid cancers. Here, we show the loss of 5-hmC in a broad spectrum of solid tumors: for example, a significant reduction of 5-hmC was found in 72.7% of colorectal cancers (CRCs) and 75% of gastric cancers compared to background tissues. TET1 expression was decreased in half of CRCs, and a large part of them was followed by the loss of 5-hmC. These findings suggest that the amount of 5-hmC in tumors is often reduced via various mechanisms, including the downregulation of TET1. Consistently, in the in vitro experiments, the downregulation of TET1 was clearly induced by oncogene-dependent cellular transformation, and loss of 5-hmC was seen in the transformed cells. These results suggest the critical roles of aberrant DNA demethylation for oncogenic processes in solid tissues.


Asunto(s)
5-Metilcitosina/metabolismo , Transformación Celular Neoplásica/genética , Citosina/análogos & derivados , Proteínas de Unión al ADN/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Citosina/metabolismo , Metilación de ADN/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Oxigenasas de Función Mixta , Mutación , Neoplasias Gástricas/genética
14.
Biochem Biophys Res Commun ; 420(3): 564-9, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22445758

RESUMEN

Hepatocellular carcinoma is the third leading cause of cancer mortality worldwide, but the molecular mechanisms in tumorigenesis remain largely unknown. Previously, a DEAD-box protein DDX20, a component of microRNA-containing ribonucleoprotein complexes, was identified as a liver tumor suppressor candidate in an oncogenomics-based in vivo RNAi screen. However, the molecular mechanisms were unknown. Here, we show that deficiency of DDX20 results in the enhancement of NF-κB activity, a crucial intracellular signaling pathway closely linked with hepatocarcinogenesis. While DDX20 normally suppresses NF-κB activity by regulating NF-κB-suppressing miRNA-140 function, this suppressive effect was lost in DDX20-deficient cells. The impairment of miRNA function due to DDX20 deficiency appears to be miRNA species-specific at the point of loading miRNAs into the RNA-induced silencing complex. These results indicate that DDX20 deficiency enhances NF-κB activity by impairing the NF-κB-suppressive action of microRNAs, and suggest that dysregulation of the microRNA machinery components may also be involved in pathogenesis in various human diseases.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteína 20 DEAD-Box/metabolismo , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proteína 20 DEAD-Box/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , FN-kappa B/agonistas , Factor de Necrosis Tumoral alfa/farmacología
15.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35380992

RESUMEN

Enhanced de novo lipogenesis mediated by sterol regulatory element-binding proteins (SREBPs) is thought to be involved in nonalcoholic steatohepatitis (NASH) pathogenesis. In this study, we assessed the impact of SREBP inhibition on NASH and liver cancer development in murine models. Unexpectedly, SREBP inhibition via deletion of the SREBP cleavage-activating protein (SCAP) in the liver exacerbated liver injury, fibrosis, and carcinogenesis despite markedly reduced hepatic steatosis. These phenotypes were ameliorated by restoring SREBP function. Transcriptome and lipidome analyses revealed that SCAP/SREBP pathway inhibition altered the fatty acid (FA) composition of phosphatidylcholines due to both impaired FA synthesis and disorganized FA incorporation into phosphatidylcholine via lysophosphatidylcholine acyltransferase 3 (LPCAT3) downregulation, which led to endoplasmic reticulum (ER) stress and hepatocyte injury. Supplementation with phosphatidylcholines significantly improved liver injury and ER stress induced by SCAP deletion. The activity of the SCAP/SREBP/LPCAT3 axis was found to be inversely associated with liver fibrosis severity in human NASH. SREBP inhibition also cooperated with impaired autophagy to trigger liver injury. Thus, excessively strong and broad lipogenesis inhibition was counterproductive for NASH therapy; this will have important clinical implications in NASH treatment.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias Hepáticas , Proteínas de la Membrana , Enfermedad del Hígado Graso no Alcohólico , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Carcinogénesis , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilcolinas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
16.
Int J Cancer ; 128(6): 1293-302, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20473946

RESUMEN

RAS signaling is frequently deregulated in human neoplasms. However, RAS mutations have been found in only a small proportion of human gastric cancers, implicating other mechanisms in the activation of RAS signaling in gastric tumorigenesis. We have previously reported that decreased expression of RAS protein activator like-1 (RASAL1), a member of the RAS-GTPase-activating proteins that switch off RAS activity, contributes to colon tumor progression. In our study, we explored the involvement of decreased RASAL1 expression in gastric tumorigenesis. RASAL1 expression was reduced in 6 of 10 gastric cancer cell lines examined by immunoblotting. Knockdown of RASAL1 increased mitogen-activated protein kinase signaling in response to growth factor stimulation, and the forced expression of RASAL1 reduced proliferation of gastric cancer cells. Immunohistochemical analyses in primary gastric tumors showed that RASAL1 expression was reduced in 23 of 48 (48%) of the gastric cancers but in none of the adenomas (0/10). Methylation of the RASAL1 promoter region and loss of heterozygosity (LOH) at the RASAL1 locus were examined to investigate the causes of RASAL1 silencing. All cell lines with reduced RASAL1 had RASAL1 methylation, and two had LOH. In primary gastric cancers, methylation or LOH was detected in 50% (6/12) of those with reduced RASAL1. Furthermore, RASAL1 expression was restored in some cell lines by histone deacetylase inhibitor treatment. Our findings demonstrate that reduced RASAL1 expression, partly due to genetic and epigenetic changes, contributes to gastric carcinogenesis, and also re-emphasize the importance of RAS signaling in gastric cancer development.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Pérdida de Heterocigocidad , Mutación/genética , Neoplasias Gástricas/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Proliferación Celular , Progresión de la Enfermedad , Femenino , Silenciador del Gen , Humanos , Técnicas para Inmunoenzimas , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Células Tumorales Cultivadas
17.
J Hepatol ; 55(6): 1400-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21703185

RESUMEN

BACKGROUND & AIMS: Some clinical findings have suggested that systemic metabolic disorders accelerate in vivo tumor progression. Deregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is implicated in both metabolic dysfunction and carcinogenesis in humans; however, it remains unknown whether the altered metabolic status caused by abnormal activation of the pathway is linked to the protumorigenic effect. METHODS: We established hepatocyte-specific Pik3ca transgenic (Tg) mice harboring N1068fs*4 mutation. RESULTS: The Tg mice exhibited hepatic steatosis and tumor development. PPARγ-dependent lipogenesis was accelerated in the Tg liver, and the abnormal profile of accumulated fatty acid (FA) composition was observed in the tumors of Tg livers. In addition, the Akt/mTOR pathway was highly activated in the tumors, and in turn, the expression of tumor suppressor genes including Pten, Xpo4, and Dlc1 decreased. Interestingly, we found that the suppression of those genes and the enhanced in vitro colony formation were induced in the immortalized hepatocytes by the treatment with oleic acid (OA), which is one of the FAs that accumulated in tumors. CONCLUSIONS: Our data suggest that the unusual FA accumulation has a possible role in promoting in vivo hepato-tumorigenesis under constitutive activation of the PI3K pathway. The Pik3ca Tg mice might help to elucidate molecular mechanisms by which metabolic dysfunction contributes to in vivo tumor progression.


Asunto(s)
Ácidos Grasos/metabolismo , Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Secuencia de Bases , Fosfatidilinositol 3-Quinasa Clase I , Cartilla de ADN/genética , Regulación hacia Abajo , Activación Enzimática , Ácidos Grasos/química , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Expresión Génica , Genes Supresores de Tumor , Hepatocitos/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Ácidos Oléicos/metabolismo , Ácidos Palmíticos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
18.
Cell Death Dis ; 12(1): 99, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468997

RESUMEN

While the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


Asunto(s)
Apoptosis/genética , Carcinoma Hepatocelular/genética , Daño del ADN/genética , Hepatocitos/metabolismo , Histona Metiltransferasas/genética , Neoplasias Hepáticas/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/patología , Silenciador del Gen , Humanos , Neoplasias Hepáticas/patología , Ratones
19.
J Gastroenterol ; 56(5): 456-469, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33712873

RESUMEN

BACKGROUND: Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA), are rapidly emerging as a non-invasive alternative to tumor biopsies. However, clinical applications of ctDNA analysis in hepatocellular carcinoma (HCC) have not been fully elucidated. METHODS: We measured the amount of plasma-derived cell-free DNA (cfDNA) in HCC patients before (n = 100) and a few days after treatment (n = 87), including radiofrequency ablation, transarterial chemoembolization, and molecular-targeted agents (MTAs), and prospectively analyzed their associations with clinical parameters and prognosis. TERT promoter mutations in cfDNA were analyzed using droplet digital PCR. Furthermore, we performed a comprehensive mutational analysis of post-treatment cfDNA via targeted ultra-deep sequencing (22,000× coverage) in a panel of 275 cancer-related genes in selected patients. RESULTS: Plasma cfDNA levels increased significantly according to HCC clinical stage, and a high cfDNA level was independently associated with a poor prognosis. TERT promoter mutations were detected in 45% of all cases but were not associated with any clinical characteristics. cfDNA levels increased significantly a few days after treatment, and a greater increase in post-treatment cfDNA levels was associated with a greater therapeutic response to MTAs. The detection rate of TERT mutations increased to 57% using post-treatment cfDNA, suggesting that the ctDNA was enriched. Targeted ultra-deep sequencing using post-treatment cfDNA after administering lenvatinib successfully detected various gene mutations and obtained promising results in lenvatinib-responsive cases. CONCLUSIONS: Post-treatment cfDNA analysis may facilitate the construction of biomarkers for predicting MTA treatment effects.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Ácidos Nucleicos Libres de Células/farmacología , Terapia Molecular Dirigida/normas , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Biomarcadores/análisis , Biomarcadores/sangre , Ácidos Nucleicos Libres de Células/uso terapéutico , Femenino , Humanos , Japón , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/estadística & datos numéricos , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos
20.
Dev Cell ; 56(1): 95-110.e10, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33207226

RESUMEN

Cancer-associated fibroblasts (CAFs) promote tumor malignancy, but the precise transcriptional mechanisms regulating the acquisition of the CAF phenotype are not well understood. We show that the upregulation of SOX2 is central to this process, which is repressed by protein kinase Cζ (PKCζ). PKCζ deficiency activates the reprogramming of colonic fibroblasts to generate a predominant SOX2-dependent CAF population expressing the WNT regulator Sfrp2 as its top biomarker. SOX2 directly binds the Sfrp1/2 promoters, and the inactivation of Sox2 or Sfrp1/2 in CAFs impaired the induction of migration and invasion of colon cancer cells, as well as their tumorigenicity in vivo. Importantly, recurrence-free and overall survival of colorectal cancer (CRC) patients negatively correlates with stromal PKCζ levels. Also, SOX2 expression in the stroma is associated with CRC T invasion and worse prognosis of recurrence-free survival. Therefore, the PKCζ-SOX2 axis emerges as a critical step in the control of CAF pro-tumorigenic potential.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/deficiencia , Factores de Transcripción SOXB1/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Invasividad Neoplásica/genética , Organoides/metabolismo , Organoides/patología , Unión Proteica , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , RNA-Seq , Recurrencia , Factores de Transcripción SOXB1/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Análisis de la Célula Individual , Regulación hacia Arriba , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA