Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Commun Med (Lond) ; 2(1): 154, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473994

RESUMEN

BACKGROUND: Conventional preclinical models often miss drug toxicities, meaning the harm these drugs pose to humans is only realized in clinical trials or when they make it to market. This has caused the pharmaceutical industry to waste considerable time and resources developing drugs destined to fail. Organ-on-a-Chip technology has the potential improve success in drug development pipelines, as it can recapitulate organ-level pathophysiology and clinical responses; however, systematic and quantitative evaluations of Organ-Chips' predictive value have not yet been reported. METHODS: 870 Liver-Chips were analyzed to determine their ability to predict drug-induced liver injury caused by small molecules identified as benchmarks by the Innovation and Quality consortium, who has published guidelines defining criteria for qualifying preclinical models. An economic analysis was also performed to measure the value Liver-Chips could offer if they were broadly adopted in supporting toxicity-related decisions as part of preclinical development workflows. RESULTS: Here, we show that the Liver-Chip met the qualification guidelines across a blinded set of 27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of 100%. We also show that this level of performance could generate over $3 billion annually for the pharmaceutical industry through increased small-molecule R&D productivity. CONCLUSIONS: The results of this study show how incorporating predictive Organ-Chips into drug development workflows could substantially improve drug discovery and development, allowing manufacturers to bring safer, more effective medicines to market in less time and at lower costs.


Drug development is lengthy and costly, as it relies on laboratory models that fail to predict human reactions to potential drugs. Because of this, toxic drugs sometimes go on to harm humans when they reach clinical trials or once they are in the marketplace. Organ-on-a-Chip technology involves growing cells on small devices to mimic organs of the body, such as the liver. Organ-Chips could potentially help identify toxicities earlier, but there is limited research into how well they predict these effects compared to conventional models. In this study, we analyzed 870 Liver-Chips to determine how well they predict drug-induced liver injury, a common cause of drug failure, and found that Liver-Chips outperformed conventional models. These results suggest that widespread acceptance of Organ-Chips could decrease drug attrition, help minimize harm to patients, and generate billions in revenue for the pharmaceutical industry.

4.
Lab Chip ; 17(13): 2294-2302, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28608907

RESUMEN

Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER-MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Línea Celular , Impedancia Eléctrica , Electrodos , Diseño de Equipo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas/métodos
5.
Springerplus ; 5: 234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27026928

RESUMEN

Human induced pluripotent stem cells (hiPSC) have enabled a major step forward in pathophysiologic studies of inherited diseases and may also prove to be valuable in in vitro drug testing. Long QT syndrome (LQTS), characterized by prolonged cardiac repolarization and risk of sudden death, may be inherited or result from adverse drug effects. Using a microelectrode array platform, we investigated the effects of six different drugs on the electrophysiological characteristics of human embryonic stem cell-derived cardiomyocytes as well as hiPSC-derived cardiomyocytes from control subjects and from patients with type 1 (LQT1) and type 2 (LQT2) of LQTS. At baseline the repolarization time was significantly longer in LQTS cells compared to controls. Isoprenaline increased the beating rate of all cell lines by 10-73 % but did not show any arrhythmic effects in any cell type. Different QT-interval prolonging drugs caused prolongation of cardiac repolarization by 3-13 % (cisapride), 10-20 % (erythromycin), 8-23 % (sotalol), 16-42 % (quinidine) and 12-27 % (E-4031), but we did not find any systematic differences in sensitivity between the control, LQT1 and LQT2 cell lines. Sotalol, quinidine and E-4031 also caused arrhythmic beats and beating arrests in some cases. In summary, the drug effects on these patient-specific cardiomyocytes appear to recapitulate clinical observations and provide further evidence that these cells can be applied for in vitro drug testing to probe their vulnerability to arrhythmia.

6.
J Mater Chem B ; 4(20): 3534-3543, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263387

RESUMEN

Pharmaceutical screening based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and multi electrode arrays (MEAs) have been proposed as a complementary method for electrophysiological safety and efficacy assessment in drug discovery and development. Contrary to animal models, these cells offer a human genetic background but, at present, fail to recapitulate the mechanical and structural properties of the native human myocardium. Here, we report that topographical cues on soft micromolded gelatin can coax hiPSC-CMs to form laminar cardiac tissues that resemble the native architecture of the heart. Importantly, using this method we were able to record tissue-level electrophysiological responses with a commercially available MEA setup. To validate this platform, we recorded cardiac field potentials at baseline and after pharmacological interventions with a ß-adrenergic agonist (isoproterenol). Further, we tested the ability of our system to predict the response of laminar human cardiac tissues to a cardiotoxic pro-drug (terfenadine) and its non-cardiotoxic metabolite (fexofenadine). Finally, we integrated our platform with microfluidic components to build a heart-on-a-chip system that can be fluidically linked with other organs-on-chips in the future.

7.
Dis Model Mech ; 5(2): 220-30, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22052944

RESUMEN

Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (I(Kr)) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/etiología , Síndrome de QT Prolongado/fisiopatología , Modelos Cardiovasculares , Potenciales de Acción , Sustitución de Aminoácidos , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Secuencia de Bases , Diferenciación Celular , Línea Celular , Cartilla de ADN/genética , Canal de Potasio ERG1 , Fenómenos Electrofisiológicos , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Síndrome de QT Prolongado/clasificación , Síndrome de QT Prolongado/genética , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp
8.
Comput Methods Programs Biomed ; 104(2): 199-205, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21645941

RESUMEN

Extracellular field potential (FP) recordings with microelectrode arrays (MEAs) from cardiomyocyte cultures offer a non-invasive way of studying the electrophysiological properties of these cells at the population level. Several studies have examined the FP properties of cardiomyocytes of various origins, including stem cell-derived cardiomyocytes. This focus reflects growing importance and interest in the field of MEA. High-quality cardiac FP signals are often difficult to obtain, especially from stem cell-derived cardiomyocyte cultures, which represent an important new field in cardiac electrophysiology. One way to improve the quality of these recordings is to average the cardiac FP signals. To date, however, no studies have examined the effect of averaging on cardiac FP signals. We report here that cardiac FP averaging can yield higher-quality signals than original individual FPs, and therefore promise more accurate detection of different phases and analysis of the cardiac FP signal. Averaged signals improved the signal-to-noise ratio (SNR), and obtaining reliable averages required approximately 50 cardiac cycles. We therefore propose that routine cardiac FP averaging can serve as a tool to compare the effects of different experimental conditions or stimuli on the properties of cardiac FPs.


Asunto(s)
Electrocardiografía/métodos , Corazón/fisiología , Microelectrodos , Células Madre Embrionarias/citología , Humanos , Técnicas In Vitro , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA