Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 360, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012403

RESUMEN

HMG-CoA reductase (HMGR), a rate-limiting enzyme of the mevalonate pathway in Gram-positive pathogenic bacteria, is an attractive target for development of novel antibiotics. In this study, we report the crystal structures of HMGR from Enterococcus faecalis (efHMGR) in the apo and liganded forms, highlighting several unique features of this enzyme. Statins, which inhibit the human enzyme with nanomolar affinity, perform poorly against the bacterial HMGR homologs. We also report a potent competitive inhibitor (Chembridge2 ID 7828315 or compound 315) of the efHMGR enzyme identified by a high-throughput, in-vitro screening. The X-ray crystal structure of efHMGR in complex with 315 was determined to 1.27 Å resolution revealing that the inhibitor occupies the mevalonate-binding site and interacts with several key active site residues conserved among bacterial homologs. Importantly, 315 does not inhibit the human HMGR. Our identification of a selective, non-statin inhibitor of bacterial HMG-CoA reductases will be instrumental in lead optimization and development of novel antibacterial drug candidates.


Asunto(s)
Enterococcus faecalis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Acilcoenzima A/metabolismo , Enterococcus faecalis/enzimología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico
2.
ChemMedChem ; 17(9): e202200043, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080134

RESUMEN

The sulfotransferase (SULT) 2B1b, which catalyzes the sulfonation of 3ß-hydroxysteroids, has been identified as a potential target for prostate cancer treatment. However, a major limitation for SULT2B1b-targeted drug discovery is the lack of robust assays compatible with high-throughput screening and inconsistency in reported kinetic data. For this reason, we developed a novel label-free assay based on high-throughput (>1 Hz) desorption electrospray ionization mass spectrometry (DESI-MS) for the direct quantitation of the sulfoconjugated product (CV<10 %; <1 ng analyte). The performance of this DESI-based assay was compared against a new fluorometric coupled-enzyme method that we also developed. Both methodologies provided consistent kinetic data for the reaction of SULT2B1b with its major substrates, indicating the affinity trend pregnenolone>DHEA>cholesterol, for both the phospho-mimetic and wild-type SULT2B1b forms. The novel DESI-MS assay developed here is likely generalizable to other drug discovery efforts and is particularly promising for identification of SULT2B1b inhibitors with potential as prostate cancer therapeutics.


Asunto(s)
Neoplasias de la Próstata , Espectrometría de Masa por Ionización de Electrospray , Bioensayo , Humanos , Cinética , Masculino , Sulfotransferasas/química , Sulfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA